Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(21)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38054513

ABSTRACT

The violation of detailed balance poses a serious problem for the majority of current quasiclassical methods for simulating nonadiabatic dynamics. In order to analyze the severity of the problem, we predict the long-time limits of the electronic populations according to various quasiclassical mapping approaches by applying arguments from classical ergodic theory. Our analysis confirms that regions of the mapping space that correspond to negative populations, which most mapping approaches introduce in order to go beyond the Ehrenfest approximation, pose the most serious issue for reproducing the correct thermalization behavior. This is because inverted potentials, which arise from negative electronic populations entering the nuclear force, can result in trajectories unphysically accelerating off to infinity. The recently developed mapping approach to surface hopping (MASH) provides a simple way of avoiding inverted potentials while retaining an accurate description of the dynamics. We prove that MASH, unlike any other quasiclassical approach, is guaranteed to describe the exact thermalization behavior of all quantum-classical systems, confirming it as one of the most promising methods for simulating nonadiabatic dynamics in real condensed-phase systems.

2.
J Chem Phys ; 158(6): 064113, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36792511

ABSTRACT

Trajectory-based methods that propagate classical nuclei on multiple quantum electronic states are often used to simulate nonadiabatic processes in the condensed phase. A long-standing problem of these methods is their lack of detailed balance, meaning that they do not conserve the equilibrium distribution. In this article, we investigate ideas for restoring detailed balance in mixed quantum-classical systems by tailoring the previously proposed spin-mapping approach to thermal equilibrium. We find that adapting the spin magnitude can recover the correct long-time populations but is insufficient to conserve the full equilibrium distribution. The latter can however be achieved by a more flexible mapping of the spin onto an ellipsoid, which is constructed to fulfill detailed balance for arbitrary potentials. This ellipsoid approach solves the problem of negative populations that has plagued previous mapping approaches and can therefore be applied also to strongly asymmetric and anharmonic systems. Because it conserves the thermal distribution, the method can also exploit efficient sampling schemes used in standard molecular dynamics, which drastically reduces the number of trajectories needed for convergence. The dynamics does however still have mean-field character, as is observed most clearly by evaluating reaction rates in the golden-rule limit. This implies that although the ellipsoid mapping provides a rigorous framework, further work is required to find an accurate classical-trajectory approximation that captures more properties of the true quantum dynamics.

3.
J Chem Phys ; 157(23): 234103, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36550031

ABSTRACT

The formalism of the generalized quantum master equation (GQME) is an effective tool to simultaneously increase the accuracy and the efficiency of quasiclassical trajectory methods in the simulation of nonadiabatic quantum dynamics. The GQME expresses correlation functions in terms of a non-Markovian equation of motion, involving memory kernels that are typically fast-decaying and can therefore be computed by short-time quasiclassical trajectories. In this paper, we study the approximate solution of the GQME, obtained by calculating the kernels with two methods: Ehrenfest mean-field theory and spin-mapping. We test the approaches on a range of spin-boson models with increasing energy bias between the two electronic levels and place a particular focus on the long-time limits of the populations. We find that the accuracy of the predictions of the GQME depends strongly on the specific technique used to calculate the kernels. In particular, spin-mapping outperforms Ehrenfest for all the systems studied. The problem of unphysical negative electronic populations affecting spin-mapping is resolved by coupling the method with the master equation. Conversely, Ehrenfest in conjunction with the GQME can predict negative populations, despite the fact that the populations calculated from direct dynamics are positive definite.

4.
Chimia (Aarau) ; 76(6): 582-588, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-38069729

ABSTRACT

Many chemical reactions exhibit nonadiabatic effects as a consequence of coupling between electronic states and/or interaction with light. While a fully quantum description of nonadiabatic reactions is unfeasible for most realistic molecules, a more computationally tractable approach is to combine a classical description of the nuclei with a quantum description of the electronic states. Combining the formalisms of quantum and classical dynamics is however a difficult problem for which standard methods (such as Ehrenfest dynamics and surface hopping) may be insufficient. In this article, we review a new trajectory-based approach developed in our group that is able to describe nonadiabatic dynamics with a higher accuracy than previous approaches but for a similar level of computational effort. This method treats the electronic states with a phase-space representation for discrete-level systems, which in the two-level case is analogous to a spin-½. We point out the key features of the method and demonstrate its use in a variety of applications, including ultrafast transfer through conical intersections, damped coherent excitation under coupling to a strong light field, and nonlinear spectroscopy of light-harvesting complexes.

5.
Chaos ; 30(3): 033116, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32237780

ABSTRACT

We study the statistics and short-time dynamics of the classical and the quantum Fermi-Pasta-Ulam chain in the thermal equilibrium. We analyze the distributions of single-particle configurations by integrating out the rest of the system. At low temperatures, we observe a systematic increase in the mobility of the chain when transitioning from classical to quantum mechanics due to zero-point energy effects. We analyze the consequences of quantum dispersion on the dynamics at short times of configurational correlation functions.

6.
Phys Rev E ; 100(5-1): 052140, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869953

ABSTRACT

We discuss the structure of the equation of motion that governs nucleation processes at first order phase transitions. From the underlying microscopic dynamics of a nucleating system, we derive by means of a nonequilibrium projection operator formalism the equation of motion for the size distribution of the nuclei. The equation is exact, i.e., the derivation does not contain approximations. To assess the impact of memory, we express the equation of motion in a form that allows for direct comparison to the Markovian limit. As a numerical test, we have simulated crystal nucleation from a supersaturated melt of particles interacting via a Lennard-Jones potential. The simulation data show effects of non-Markovian dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...