Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2400306, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762768

ABSTRACT

To date, strategies aiming to modulate cell to extracellular matrix (ECM) interactions during organoid derivation remain largely unexplored. Here renal decellularized ECM (dECM) hydrogels are fabricated from porcine and human renal cortex as biomaterials to enrich cell-to-ECM crosstalk during the onset of kidney organoid differentiation from human pluripotent stem cells (hPSCs). Renal dECM-derived hydrogels are used in combination with hPSC-derived renal progenitor cells to define new approaches for 2D and 3D kidney organoid differentiation, demonstrating that in the presence of these biomaterials the resulting kidney organoids exhibit renal differentiation features and the formation of an endogenous vascular component. Based on these observations, a new method to produce kidney organoids with vascular-like structures is achieved through the assembly of hPSC-derived endothelial-like organoids with kidney organoids in 3D. Major readouts of kidney differentiation and renal cell morphology are assessed exploiting these culture platforms as new models of nephrogenesis. Overall, this work shows that exploiting cell-to-ECM interactions during the onset of kidney differentiation from hPSCs facilitates and optimizes current approaches for kidney organoid derivation thereby increasing the utility of these unique cell culture platforms for personalized medicine.

2.
Cytotherapy ; 24(4): 376-384, 2022 04.
Article in English | MEDLINE | ID: mdl-35086779

ABSTRACT

The fetal liver is unique because of the coexistence of cells with endodermal and mesenchymal origins, making it a potential source of hepatic and pancreatic regenerative medicine. The liver appears at about the third week of gestation, growing rapidly from the fifth to the 10th week. We define fetal liver from 10 weeks of gestation, when hematopoietic progenitor cells gradually migrate from the aorta-mesonephros-gonad region to colonize the liver. Indeed, the fetal liver may be the most available source of cell therapy for liver disease. We conducted a review of the literature using Medline and EMBASE (up to May 2021) to identify clinical studies in which patients with liver disease had been given fetal liver cell therapy. This literature review highlighted the heterogeneity of cell isolation and selection protocols, which hinders the ability to pool data and perform a meta-analysis. A limitation of the studies analyzed was the scarcity of reports (n = 8) and the extremely small sample sizes (median sample size of treated patients was two), although there was a fairly long follow-up (median 12 months). The weeks after conception ranged from 16 to 34. There were no randomized controlled trials, and therefore no study was stratified as being of good methodological quality. Cryopreservation may help to circumvent the critical logistic issues that hamper the use of fetal liver cell therapy in clinical practice. To help consolidate the role of the fetal liver in regenerative medicine, good preclinical translational studies are necessary, whereas tracing strategies and biopsy-based endpoints are crucial in the clinic, along with well-designed, large, multicenter, randomized controlled trials using clinically applicable primary outcomes and refined imaging assessment.


Subject(s)
Liver Diseases , Cell- and Tissue-Based Therapy , Hepatocytes , Humans , Liver Diseases/therapy , Meta-Analysis as Topic , Multicenter Studies as Topic , Treatment Outcome
3.
J Hepatol ; 75(6): 1377-1386, 2021 12.
Article in English | MEDLINE | ID: mdl-34329660

ABSTRACT

BACKGROUND & AIMS: The microenvironment of intrahepatic cholangiocarcinoma (iCCA) is hypovascularized, with an extensive lymphatic network. This leads to rapid cancer spread into regional lymph nodes and the liver parenchyma, precluding curative treatments. Herein, we investigated which factors released in the iCCA stroma drive the inhibition of angiogenesis and promote lymphangiogenesis. METHODS: Quantitative proteomics was performed on extracellular fluid (ECF) proteins extracted both from cancerous and non-cancerous tissues (NCT) of patients with iCCA. Computational biology was applied on a proteomic dataset to identify proteins involved in the regulation of vessel formation. Endothelial cells incubated with ECF from either iCCA or NCT specimens were used to assess the role of candidate proteins in 3D vascular assembly, cell migration, proliferation and viability. Angiogenesis and lymphangiogenesis were further investigated in vivo by a heterotopic transplantation of bone marrow stromal cells, along with endothelial cells in SCID/beige mice. RESULTS: Functional analysis of upregulated proteins in iCCA unveils a soluble angio-inhibitory milieu made up of thrombospondin (THBS)1, THBS2 and pigment epithelium-derived factor (PEDF). iCCA ECF was able to inhibit in vitro vessel morphogenesis and viability. Antibodies blocking THBS1, THBS2 and PEDF restored tube formation and endothelial cell viability to levels observed in NCT ECF. Moreover, in transplanted mice, the inhibition of blood vessel formation, the de novo generation of the lymphatic network and the dissemination of iCCA cells in lymph nodes were shown to depend on THBS1, THBS2 and PEDF expression. CONCLUSIONS: THBS1, THBS2 and PEDF reduce blood vessel formation and promote tumor-associated lymphangiogenesis in iCCA. Our results identify new potential targets for interventions to counteract the dissemination process in iCCA. LAY SUMMARY: Intrahepatic cholangiocarcinoma is a highly aggressive cancer arising from epithelial cells lining the biliary tree, characterized by dissemination into the liver parenchyma via lymphatic vessels. Herein, we show that the proteins THBS1, THBS2 and PEDF, once released in the tumor microenvironment, inhibit vascular growth, while promoting cancer-associated lymphangiogenesis. Therefore, targeting THBS1, THBS2 and PEDF may be a promising strategy to reduce cancer-associated lymphangiogenesis and counteract the invasiveness of intrahepatic cholangiocarcinoma.


Subject(s)
Angiogenesis Inducing Agents/metabolism , Cholangiocarcinoma/etiology , Lymphangiogenesis/drug effects , Thrombospondin 1/pharmacology , Thrombospondins/pharmacology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Cholangiocarcinoma/physiopathology , Disease Models, Animal , Mice , Proteomics/methods , Proteomics/statistics & numerical data , Thrombospondin 1/administration & dosage , Thrombospondins/administration & dosage , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...