Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 407(20): 6021-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26048055

ABSTRACT

Enzyme immunoassays are currently the methods of choice for gluten control in foods labelled as gluten free, providing a mechanism for assessing food safety for consumption by coeliac and other allergic patients. However, their limitations, many of them associated to the reactivity of the different antibodies used and their degree of specificity, have prevented the establishment of a standardised method of analysis. We explore new methods for quantitatively determining gluten content in foods based on the use of two recently described aptamers, raised against a 33-mer peptide recognised as the immunodominant fragment from α2-gliadin. The assays use the target peptide immobilised onto streptavidin-coated magnetic beads in combination with a limited amount of biotin-aptamer in a competitive format, followed by streptavidin-peroxidase labelling of the aptamer that remains bound to the magnetic beads. The enzyme activity onto the beads, measured by chronoamperometry in disposable screen-printed electrodes, is inversely related to the target concentration in the test solution. We find that while the assay using the aptamer with the highest affinity towards the target (Gli 4) achieves low detection limits (~0.5 ppm) and excellent analytical performance, when challenged in samples containing the intact protein, gliadin, it fails in detecting the peptide in solution. This problem is circumvented by employing another aptamer (Gli 1), the most abundant one in the SELEX pool, as a receptor. The proposed assays allow the convenient detection of the allergen in different kinds of food samples, including heat-treated and hydrolysed ones. The obtained results correlate with those of commercially available antibody-based assays, providing an alternative for ensuring the safety and quality of nominally gluten-free foods. Graphical Abstract Electrochemical magnetoassay for gluten determination using biotin-aptamers as receptors.


Subject(s)
Aptamers, Nucleotide/chemistry , Edible Grain/chemistry , Electrochemical Techniques/methods , Food Analysis/methods , Gliadin/analysis , Amino Acid Sequence , Base Sequence , Glutens/analysis , Humans , Limit of Detection , Molecular Sequence Data
2.
Anal Chim Acta ; 873: 63-70, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25911431

ABSTRACT

Aptamers are starting to increase the reagents tool box to develop more sensitive and reliable methods for food allergens. In most of these assays, aptamers have to be modified for detection and/or immobilization purposes. To take full advantage of their affinity, which decisively influence the detectability, these modifications must be faced rationally. In this work, a recently developed aptamer for an immunotoxic peptide of gliadin associated to celiac disease is used in different configurations and modified with various markers and anchored groups to evaluate the influence of such modifications on the real affinity. The interaction in solution with the peptide is strong for a relatively small molecule (Kd = 45 ± 10 nM, 17 °C) and slightly stronger than that for the immobilized intact protein due to a cooperative binding effect. Comparatively, while only minor differences were found when the peptide or the aptamer were immobilized, labeling with a biotin resulted preferable over fluorescein (Kd = 102 ± 11 vs 208 ± 54 nM, 25 °C). These findings are of prime importance for the design of an aptamer-based analytical method for gluten quantification.


Subject(s)
Aptamers, Nucleotide/chemistry , Gliadin/analysis , Glutens/analysis , Amino Acid Sequence , Base Sequence , Celiac Disease/diagnosis , Dielectric Spectroscopy , Humans , Models, Molecular , Molecular Sequence Data , Surface Plasmon Resonance
3.
Anal Chem ; 86(5): 2733-9, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24502317

ABSTRACT

Celiac disease represents a significant public health problem in large parts of the world. A major hurdle in the effective management of the disease by celiac sufferers is the sensitivity of the current available methods for assessing gluten contents in food. In response, we report a highly sensitive approach for gluten analysis using aptamers as specific receptors. Gliadins, a fraction of gluten proteins, are the main constituent responsible for triggering the disease. However, they are highly hydrophobic and large molecules, regarded as difficult targets for in vitro evolution of aptamers without nucleobase modification. We describe the successful selection of aptamers for these water insoluble prolamins that was achieved choosing the immunodominant apolar peptide from α2-gliadin as a target for selection. All aptamers evolved are able to bind the target in its native environment within the natural protein. The best nonprotein receptor is the basis for an electrochemical competitive enzyme-linked assay on magnetic particles, which allows the measurement of as low as 0.5 ppb of gliadin standard (0.5 ppm of gluten). Reference immunoassay for detecting the same target has a limit of detection of 3 ppm, 6 times less sensitive than this method. Importantly, it also displays high specificity, detecting the other three prolamins toxic for celiac patients and not showing cross-reactivity to nontoxic proteins such as maize, soya, and rice. These features make the proposed method a valuable tool for gluten detection in foods.


Subject(s)
Aptamers, Nucleotide/metabolism , Celiac Disease/metabolism , Glutens/metabolism , Proteins/metabolism , Humans , Hydrophobic and Hydrophilic Interactions
4.
Sensors (Basel) ; 13(12): 16292-311, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24287543

ABSTRACT

Ensuring food safety is nowadays a top priority of authorities and professional players in the food supply chain. One of the key challenges to determine the safety of food and guarantee a high level of consumer protection is the availability of fast, sensitive and reliable analytical methods to identify specific hazards associated to food before they become a health problem. The limitations of existing methods have encouraged the development of new technologies, among them biosensors. Success in biosensor design depends largely on the development of novel receptors with enhanced affinity to the target, while being stable and economical. Aptamers fulfill these characteristics, and thus have surfaced as promising alternatives to natural receptors. This Review describes analytical strategies developed so far using aptamers for the control of pathogens, allergens, adulterants, toxins and other forbidden contaminants to ensure food safety. The main progresses to date are presented, highlighting potential prospects for the future.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Food Contamination/analysis , Food Safety/methods , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...