Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 8(1): 894-903, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24313563

ABSTRACT

Magnetoelectric oxide heterostructures are proposed active layers for spintronic memory and logic devices, where information is conveyed through spin transport in the solid state. Incomplete theories of the coupling between local strain, charge, and magnetic order have limited their deployment into new information and communication technologies. In this study, we report direct, local measurements of strain- and charge-mediated magnetization changes in the La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 system using spatially resolved characterization techniques in both real and reciprocal space. Polarized neutron reflectometry reveals a graded magnetization that results from both local structural distortions and interfacial screening of bound surface charge from the adjacent ferroelectric. Density functional theory calculations support the experimental observation that strain locally suppresses the magnetization through a change in the Mn-eg orbital polarization. We suggest that this local coupling and magnetization suppression may be tuned by controlling the manganite and ferroelectric layer thicknesses, with direct implications for device applications.

2.
Nat Mater ; 11(10): 888-94, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22902896

ABSTRACT

Oxygen vacancy distributions and dynamics directly control the operation of solid-oxide fuel cells and are intrinsically coupled with magnetic, electronic and transport properties of oxides. For understanding the atomistic mechanisms involved during operation of the cell it is highly desirable to know the distribution of vacancies on the unit-cell scale. Here, we develop an approach for direct mapping of oxygen vacancy concentrations based on local lattice parameter measurements by scanning transmission electron microscopy. The concept of chemical expansivity is demonstrated to be applicable on the subunit-cell level: local stoichiometry variations produce local lattice expansion that can be quantified. This approach was successfully applied to lanthanum strontium cobaltite thin films epitaxially grown on substrates of different symmetry, where polarized neutron reflectometry revealed a strong difference in magnetic properties. The different vacancy content found in the two films suggests the change in oxygen chemical potential as a source of distinct magnetic properties, opening pathways for structural tuning of the vacancy concentrations and their gradients.

3.
J Chem Phys ; 125(17): 176101, 2006 Nov 07.
Article in English | MEDLINE | ID: mdl-17100477

ABSTRACT

Recent experimental measurements of state resolved scattering of nitrogen molecules from a Ru(0001) surface are discussed in comparison with a mixed quantum-classical theory that has given reasonable explanations for similar data on other systems. Acceptable agreement between data and calculations is obtained, but only upon assuming an effective mass of the surface equal to 2.3 times the mass of a single Ru atom.

4.
J Chem Phys ; 125(8): 084717, 2006 Aug 28.
Article in English | MEDLINE | ID: mdl-16965049

ABSTRACT

A theoretical approach that combines classical mechanics for treating translational and rotational degrees of freedom and quantum mechanics for describing the excitation of internal molecular modes is applied to the scattering of diatomic molecules from metal surfaces. Calculations are carried out for determining the extent of energy transfer to the rotational degrees of freedom of the projectile molecule. For the case of observed spectra of intensity versus final rotational energy, quantitative agreement with available experimental data for the scattering of NO and N(2) from close packed metal surfaces is obtained. It is shown that such measurements can be used to determine the average rotational energy of the incident molecular beam. Measurements of the exchange of energy between translational and rotational degrees of freedom upon collision are also described by calculations for these same systems.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 1): 031202, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16605510

ABSTRACT

A theoretical study of energy and momentum accommodation coefficients and reduced force coefficients for molecular gases exchanging energy with surfaces has been carried out. The theoretical model uses classical mechanics for describing translational and rotational motions while internal molecular vibrational modes are treated quantum mechanically. Calculations for diatomic molecular gases are compared with recent measurements using hypersonic beams of N2 incident on SiO2 layers deposited on Kapton substrates. The theory gives good qualitative predictions of the behavior of the various accommodation coefficients as functions of the available experimentally controllable parameters such as incident translational energy, incident beam angle, molecular and surface masses, and surface temperature. Quantitative comparisons with measurements for energy and normal momentum accommodation indicate that these experiments can be used to obtain basic physical information about the molecule-surface interaction such as the physisorption potential well depth and the extent of surface roughness.

6.
J Chem Phys ; 121(4): 1901-9, 2004 Jul 22.
Article in English | MEDLINE | ID: mdl-15260742

ABSTRACT

Experimental results are presented for the scattering of well-defined beams of molecular oxygen incident on clean Al(111). The data consist of scattered angular distributions measured as a function of incident angle, and for fixed incident angle, the dependence on surface temperature of the angular distributions. The measurements are interpreted in terms of a scattering theory that treats the exchange of energy between the translational and rotational motions of the molecule and the phonons of the surface using classical dynamics. The dependence of the measured angular distributions on incident beam angle and temperature is well explained by the theory. Rotational excitation and quantum excitation of the O(2) internal stretching mode are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...