Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(6): e0198178, 2018.
Article in English | MEDLINE | ID: mdl-29879144

ABSTRACT

The standard functional tool for gait assessment in multiple sclerosis (MS) clinical trials has been the 25-Foot Timed Walk Test, a measure of gait speed. Straight-line gait assessment may not reflect adequately upon balance and coordination. Walking tests with turns may add additional information towards understanding gait and balance status, and be more reflective of ambulation in the community. Understanding the impact of turn parameters on patient-reported outcomes of balance and walking would help MS clinicians better formulate treatment plans for persons with gait limitations. In this study, ninety-one persons with MS (Expanded Disability Status Score; EDSS, range: 0-6.5) were enrolled in an initial cross-sectional study. Twenty-four subjects (EDSS, range:1.0-6.0) completed a follow-up visit an average of 12 months later. Spatiotemporal gait analysis was collected at both visits using APDM Opal wireless body-worn sensors while performing the Timed-Up-and-Go (TUG) and 6-Minute Walk Test (6MWT). For both cross-sectional and longitudinal data, regression analyses determined the impact on the addition of turning parameters to stride velocity (SV), in the prediction of self-reported balance confidence (Activities-Specific Balance Confidence Scale (ABC)) and walking limitation (12-item Multiple Sclerosis Walking Scale (MSWS-12)). The addition of 6MWT peak turn velocity (PTV) to 6MWT SV increased the predictive power of the 6MWT for the ABC from 20% to 33%, and increased the predictive power from 28% to 41% for the MSWS-12. TUG PTV added to TUG SV also strengthened the relationship of the TUG for the ABC from 19% to 28%, and 27% to 36% for the MSWS-12. For those with 1 year follow-up, percent change in turn number of steps (TNS%Δ) during the 6MWT added to 6MWT SV%Δ improved the modeling of ABC%Δ from 24% to 33%. 6MWT PTV%Δ added to 6MWT SV%Δ increased the predictive power of MSWS-12%Δ from 8% to 27%. Conclusively, turn parameters improved modeling of self-perceived balance confidence and walking limitations when added to the commonly utilized measure of gait speed. Tests of longer durations with multiple turns, as opposed to shorter durations with a single turn, modeled longitudinal change more accurately. Turn speed and stability should be qualitatively assessed during the clinic visit, and use of multi-faceted tests such as the TUG or 6MWT may be required to fully understand gait deterioration in persons with MS.


Subject(s)
Mobility Limitation , Multiple Sclerosis/diagnosis , Multiple Sclerosis/physiopathology , Walk Test/methods , Walking/physiology , Adult , Cross-Sectional Studies , Disability Evaluation , Female , Follow-Up Studies , Gait/physiology , Humans , Male , Middle Aged , Multiple Sclerosis/complications , Postural Balance/physiology , Prognosis , Walking Speed/physiology
2.
PLoS One ; 10(6): e0130575, 2015.
Article in English | MEDLINE | ID: mdl-26110848

ABSTRACT

Moonlighting proteins comprise a subset of multifunctional proteins that perform two or more biochemical functions that are not due to gene fusions, multiple splice variants, proteolytic fragments, or promiscuous enzyme activities. The project described herein focuses on a sub-set of moonlighting proteins that have a canonical biochemical function inside the cell and perform a second biochemical function on the cell surface in at least one species. The goal of this project is to consider the biophysical features of these moonlighting proteins to determine whether they have shared characteristics or defining features that might suggest why these particular proteins were adopted for a second function on the cell surface, or if these proteins resemble typical intracellular proteins. The latter might suggest that many other normally intracellular proteins found on the cell surface might also be moonlighting in this fashion. We have identified 30 types of proteins that have different functions inside the cell and on the cell surface. Some of these proteins are found to moonlight on the surface of multiple species, sometimes with different extracellular functions in different species, so there are a total of 98 proteins in the study set. Although a variety of intracellular proteins (enzymes, chaperones, etc.) are observed to be re-used on the cell surface, for the most part, these proteins were found to have physical characteristics typical of intracellular proteins. Many other intracellular proteins have also been found on the surface of bacterial pathogens and other organisms in proteomics experiments. It is quite possible that many of those proteins also have a moonlighting function on the cell surface. The increasing number and variety of known moonlighting proteins suggest that there may be more moonlighting proteins than previously thought, and moonlighting might be a common feature of many more proteins.


Subject(s)
Cell Membrane/metabolism , Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Protein Conformation , Proteomics
3.
Nucleic Acids Res ; 43(Database issue): D277-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25324305

ABSTRACT

Moonlighting proteins comprise a class of multifunctional proteins in which a single polypeptide chain performs multiple biochemical functions that are not due to gene fusions, multiple RNA splice variants or pleiotropic effects. The known moonlighting proteins perform a variety of diverse functions in many different cell types and species, and information about their structures and functions is scattered in many publications. We have constructed the manually curated, searchable, internet-based MoonProt Database (http://www.moonlightingproteins.org) with information about the over 200 proteins that have been experimentally verified to be moonlighting proteins. The availability of this organized information provides a more complete picture of what is currently known about moonlighting proteins. The database will also aid researchers in other fields, including determining the functions of genes identified in genome sequencing projects, interpreting data from proteomics projects and annotating protein sequence and structural databases. In addition, information about the structures and functions of moonlighting proteins can be helpful in understanding how novel protein functional sites evolved on an ancient protein scaffold, which can also help in the design of proteins with novel functions.


Subject(s)
Databases, Protein , Proteins/chemistry , Proteins/physiology , Animals , Internet , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...