Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637276

ABSTRACT

BACKGROUND AND PURPOSE: Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells. EXPERIMENTAL APPROACH: The presence and activity of chymotrypsin were evaluated by Western blot and enzymatic activity tests in the luminal and mucosal compartments of murine and human gut samples. The ability of chymotrypsin to cleave the extracellular domain of PAR1 or PAR2 was assessed using cell lines expressing N-terminally tagged receptors. The cleavage site of chymotrypsin on PAR1 and PAR2 was determined by HPLC-MS analysis. The chymotrypsin signalling mechanism was investigated in CMT93 intestinal epithelial cells by calcium mobilization assays and Western blot analyses of (ERK1/2) phosphorylation. The transcriptional consequences of chymotrypsin signalling were analysed on colonic organoids. KEY RESULTS: We found that chymotrypsin was present and active in the vicinity of the colonic epithelium. Molecular pharmacological studies have shown that chymotrypsin cleaves both PAR1 and PAR2 receptors. Chymotrypsin activated calcium and ERK1/2 signalling pathways through PAR2, and this pathway promoted interleukin-10 (IL-10) up-regulation in colonic organoids. In contrast, chymotrypsin disarmed PAR1, preventing further activation by its canonical agonist, thrombin. CONCLUSION AND IMPLICATIONS: Our results highlight the ability of chymotrypsin to signal to intestinal epithelial cells via PARs, which may have important physiological consequences in gut homeostasis.

2.
Foods ; 12(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37444262

ABSTRACT

Bioinformatics software, allowing the identification of peptides by the comparison of peptide fragmentation spectra obtained by mass spectrometry versus targeted databases or directly by de novo sequencing, is now mandatory in peptidomics/proteomics approaches. Programming the identification software requires specifying, among other things, the mass measurement accuracy of the instrument and the digestion enzyme used with the number of missed cleavages allowed. Moreover, these software algorithms are able to identify a large number of post-translational modifications (PTMs). However, peptide and PTM identifications are challenging in the agrofood field due to non-specific cleavage sites of physiological- or food-grade enzymes and the number and location of PTMs. In this study, we show the importance of customized software programming to obtain a better peptide and PTM identification rate in the agrofood field. A gelatine product and one industrial gelatine hydrolysate from three different sources (beef, pork, and fish), each digested by simulated gastrointestinal digestion, MS-grade trypsin, or both, were used to perform the comparisons. Two main points are illustrated: (i) the impact of the set-up of specific enzyme versus no specific enzyme use and (ii) the impact of a maximum of six PTMs allowed per peptide versus the standard of three. Prior knowledge of the composition of the raw proteins is an important asset for better identification of peptide sequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...