Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 187(21): 7425-33, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16237026

ABSTRACT

The majority of the 90 capsule types made by the gram-positive pathogen Streptococcus pneumoniae are assembled by a block-type mechanism similar to that utilized by the Wzy-dependent O antigens and capsules of gram-negative bacteria. In this mechanism, initiation of repeat unit formation occurs by the transfer of a sugar to a lipid acceptor. In S. pneumoniae, this step is catalyzed by CpsE, a protein conserved among the majority of capsule types. Membranes from S. pneumoniae type 2 strain D39 and Escherichia coli containing recombinant Cps2E catalyzed incorporation of [14C]Glc from UDP-[14C]Glc into a lipid fraction in a Cps2E-dependent manner. The Cps2E-dependent glycolipid product from both membranes was sensitive to mild acid hydrolysis, suggesting that Cps2E was catalyzing the formation of a polyprenyl pyrophosphate Glc. Addition of exogenous polyprenyl phosphates ranging in size from 35 to 105 carbons to D39 and E. coli membranes stimulated Cps2E activity. The stimulation was due, in part, to utilization of the exogenous polyprenyl phosphates as an acceptor. The glycolipid product synthesized in the absence of exogenous polyprenyl phosphates comigrated with a 60-carbon polyprenyl pyrophosphate Glc. When 10 or 100 microM UMP was added to reaction mixtures containing D39 membranes, Cps2E activity was inhibited 40% and 80%, respectively. UMP, which acted as a competitive inhibitor of UDP-Glc, also stimulated Cps2E to catalyze the reverse reaction, with synthesis of UDP-Glc from the polyprenyl pyrophosphate Glc. These data indicated that Cps2E was catalyzing the addition of Glc-1-P to a polyprenyl phosphate acceptor, likely undecaprenyl phosphate.


Subject(s)
Bacterial Capsules/biosynthesis , Bacterial Proteins/metabolism , Glucosephosphates/metabolism , Polyisoprenyl Phosphates/metabolism , Streptococcus pneumoniae/enzymology , Carbohydrate Sequence , Cell Membrane/metabolism , Chromatography , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Deletion , Glycolipids/analysis , Molecular Sequence Data , Polyisoprenyl Phosphate Monosaccharides/metabolism , Recombinant Proteins/metabolism , Streptococcus pneumoniae/genetics , Uridine Diphosphate Glucose/metabolism
2.
Antimicrob Agents Chemother ; 49(10): 4203-9, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16189099

ABSTRACT

Macrolide resistance in Streptococcus pneumoniae due to efflux has emerged as an important worldwide clinical problem over the past decade. Efflux is mediated by the genes of the genetic element mega (macrolide efflux genetic assembly) and related elements, such as Tn1207.1. These elements contain two adjacent genes, mef (mefE or mefA) and the closely related mel gene (msrA homolog), encoding a proton motive force pump and a putative ATP-binding cassette transporter homolog, and are transcribed as an operon (M. Del Grosso et al., J. Clin. Microbiol. 40:774-778, 2004; K. Gay and D. S. Stephens, J. Infect. Dis. 184:56-65, 2001; and M. Santagati et al., Antimicrob. Agents Chemother. 44:2585-2587, 2000). Previous studies have shown that Mef is required for macrolide resistance in S. pneumoniae; however, the contribution of Mel has not been fully determined. Independent deletions were constructed in mefE and mel in the serotype 14 macrolide-resistant strains GA16638 (erythromycin [Em] MIC, 8 to 16 microg/ml) and GA17719 (Em MIC, 2 to 4 microg/ml), which contain allelic variations in the mega element. The MICs to erythromycin were significantly reduced for the independent deletion mutants of both mefE and mel compared to those of the parent strains and further reduced threefold to fourfold to Em MICs of <0.15 microg/ml with mefE mel double mutants. Using quantitative reverse transcription-PCR, the expression of mefE in the mel deletion mutants was increased more than 10-fold. However, in the mefE deletion mutants, the expression of mel did not differ significantly from the parent strains. The expression of both mefE and mel was inducible by erythromycin. These data indicate a requirement for both Mef and Mel in the novel efflux-mediated macrolide resistance system in S. pneumoniae and other gram-positive bacteria and that the system is inducible by macrolides.


Subject(s)
Bacterial Proteins/genetics , Erythromycin/pharmacology , Genes, Bacterial , Macrolides/pharmacology , Streptococcus pneumoniae/genetics , Drug Resistance, Bacterial/genetics , Erythromycin/metabolism , Gene Deletion , Reverse Transcriptase Polymerase Chain Reaction , Serotyping , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/isolation & purification
3.
J Bacteriol ; 187(15): 5387-96, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16030233

ABSTRACT

Cationic antimicrobial peptides (CAMPs) are important components of the innate host defense system against microbial infections and microbial products. However, the human pathogen Neisseria meningitidis is intrinsically highly resistant to CAMPs, such as polymyxin B (PxB) (MIC > or = 512 microg/ml). To ascertain the mechanisms by which meningococci resist PxB, mutants that displayed increased sensitivity (> or =4-fold) to PxB were identified from a library of mariner transposon mutants generated in a meningococcal strain, NMB. Surprisingly, more than half of the initial PxB-sensitive mutants had insertions within the mtrCDE operon, which encodes proteins forming a multidrug efflux pump. Additional PxB-sensitive mariner mutants were identified from a second round of transposon mutagenesis performed in an mtr efflux pump-deficient background. Further, a mutation in lptA, the phosphoethanolamine (PEA) transferase responsible for modification of the lipid A head groups, was identified to cause the highest sensitivity to PxB. Mutations within the mtrD or lptA genes also increased meningococcal susceptibility to two structurally unrelated CAMPs, human LL-37 and protegrin-1. Consistently, PxB neutralized inflammatory responses elicited by the lptA mutant lipooligosaccharide more efficiently than those induced by wild-type lipooligosaccharide. mariner mutants with increased resistance to PxB were also identified in NMB background and found to contain insertions within the pilMNOPQ operon involved in pilin biogenesis. Taken together, these data indicated that meningococci utilize multiple mechanisms including the action of the MtrC-MtrD-MtrE efflux pump and lipid A modification as well as the type IV pilin secretion system to modulate levels of CAMP resistance. The modification of meningococcal lipid A head groups with PEA also prevents neutralization of the biological effects of endotoxin by CAMP.


Subject(s)
Drug Resistance, Bacterial/genetics , Neisseria meningitidis/genetics , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Ethanolaminephosphotransferase/genetics , Lipid A/genetics , Lipoproteins/genetics , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Neisseria meningitidis/drug effects , Polymyxin B/pharmacology , Proteins/pharmacology , Cathelicidins
SELECTION OF CITATIONS
SEARCH DETAIL
...