Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36839040

ABSTRACT

NaBiF4 nanocrystalline particles were synthesized by means of a facile precipitation synthesis route to explore upconversion emission properties when doped with lanthanide ions. In particular, the incorporation of the Yb3+-Ho3+-Ce3+ triad with controlled ion concentration facilitates near-IR pumping conversion into visible light, with the possibility of color emission tuning depending on Ce3+ doping amount. We observed that introducing a Ce3+ content up to 20 at.% in NaBiF4:Yb3+/Ho3+, the chromaticity progressively turns from green for the Ce3+ undoped system to red. This is due to cross-relaxation mechanisms between Ho3+ and Ce3+ ions that influence the relative efficiency of the overall upconversion pathways, as discussed on the basis of a theoretical rate equation model. Furthermore, experimental results suggest that the photoexcitation of intra-4f Ho3+ transitions with light near the UV-visible edge can promote downconverted Yb3+ near-IR emission through quantum cutting triggered by Ho3+-Yb3+ energy transfer mechanisms. The present study evidences the potentiality of the developed NaBiF4 particles for applications that exploit lanthanide-based light frequency conversion and multicolor emission tuning.

2.
ACS Appl Mater Interfaces ; 12(49): 55195-55204, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33226771

ABSTRACT

Bismuth-based (nano)materials have been attracting increasing interest due to appealing properties such as high refractive indexes, intrinsic opacity, and structural distortions due to the stereochemistry of 6s2 lone pair electrons of Bi3+. However, the control over specific phases and strategies able to stabilize uniform bismuth-based (nano)materials is still a challenge. In this study, we employed the ability of bismuth to lower the melting point of silica to introduce a new synthetic approach able to confine the growth of bismuth-oxide-based materials into nanostructures. Combining in situ temperature-dependent synchrotron radiation X-ray powder diffraction (XRPD) with high-resolution transmission electron microscopy (HR-TEM) analyses, we demonstrate the evolution of a confined Bi2O3-SiO2 nanosystem from Bi2SiO5 to Bi4Si3O12 through a melting process. The silica shell acts as both a nanoreactor and a silicon source for the stabilization of bismuth silicate glass-ceramic nanocrystals keeping the original spherical shape. The exciton peak of Bi2SiO5 is measured for the first time allowing the estimation of its real energy gap. Moreover, based on a detailed spectroscopic investigation, we discuss the potential and the limitations of Nd3+-activated bismuth silicate systems as ratiometric thermometers. The synthetic strategy introduced here could be further explored to stabilize other bismuth-oxide-based materials, opening the way toward the growth of well-defined glass-ceramic nanoparticles.

3.
Nanomaterials (Basel) ; 9(5)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126084

ABSTRACT

The increasing concern about antibiotic-resistance has led to the search for alternative antimicrobial agents. In this effort, different metal oxide nanomaterials are currently under investigation, in order to assess their effectiveness, safety and mode of action. This study focused on CuO nanoparticles (CuO NPs) and was aimed at evaluating how the properties and the antimicrobial activity of these nanomaterials may be affected by the interaction with ligands present in biological and environmental media. Ligands can attach to the surface of particles and/or contribute to their dissolution through ligand-assisted ion release and the formation of complexes with copper ions. Eight natural amino acids (L-Arg, L-Asp, L-Glu, L-Cys, L-Val, L-Leu, L-Phe, L-Tyr) were chosen as model molecules to investigate these interactions and the toxicity of the obtained materials against the Gram-positive bacterium Staphylococcus epidermidis ATCC 35984. A different behavior from pristine CuO NPs was observed, depending on the aminoacidic side chain. These results were supported by physico-chemical and colloidal characterization carried out by means of Fourier-Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo-Gravimetric Analysis (TGA), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and light scattering techniques (Dynamic Light Scattering (DLS), Electrophoretic Light Scattering (ELS) and Centrifugal Separation Analysis (CSA).

4.
ACS Appl Mater Interfaces ; 10(46): 39512-39523, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30359523

ABSTRACT

Implantable devices need specific tailored surface morphologies and chemistries to interact with the living systems or to actively induce a biological response also by the release of drugs or proteins. These customized requirements foster technologies that can be implemented in additive manufacturing systems. Here, we present a novel approach based on spraying processes that allow to control separately topographic features in the submicron range (∼60 nm to 2 µm), ammine or carboxylic chemistry, and fluorophore release even on temperature-sensitive biodegradable polymers such as polycaprolactone (PCL). We developed a two-steps process with a first deposition of 220 nm silica and poly(lactic- co-glycolide) (PLGA) fluorescent nanoparticles by aerosol followed by the deposition of a fixing layer by an atmospheric pressure plasma jet (APPJ). The nanoparticles can be used to create the nanoroughness and to include active molecule release, while the capping layer ensures stability and the chemical functionalities. The process is enabled by a novel APPJ which allows deposition rates of 10-20 nm·s-1 at temperatures lower than 50 °C using argon as the process gas. This approach was assessed on titanium alloys for dental implants and on PCL films. The surfaces were characterized by Fourier transform infrared, atomic force microscopy, and scanning electron microscopy (SEM). Titanium alloys were tested with the preosteoblast murine cells line, while the PCL film was tested with fibroblasts. Cell behavior was evaluated by viability and adhesion assays, protein adsorption, cell proliferation, focal adhesion formation, and SEM. The release of a fluorophore molecule was assessed in the cell growing media, simulating a drug release. Osteoblast adhesion on the plasma-treated materials increased by 20% with respect to commercial titanium alloy implants. Fibroblast adhesion increased by a 100% compared to smooth PCL substrates. The release of the fluorophore by the dissolution of the PLGA nanoparticles was verified, and the integrity of the encapsulated drug model was confirmed.


Subject(s)
Drug Liberation , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Prostheses and Implants , Silicon Dioxide/chemistry , 3T3 Cells , Aerosols/chemistry , Alloys/chemistry , Animals , Argon , Biocompatible Materials/chemistry , Cell Adhesion , Cell Line , Drug Delivery Systems , Fibroblasts/cytology , Humans , Mice , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanoparticles , Osteoblasts/cytology , Plasma Gases , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature , Titanium/chemistry
5.
Front Microbiol ; 9: 3178, 2018.
Article in English | MEDLINE | ID: mdl-30619230

ABSTRACT

Stenotrophomonas maltophilia SeITE02 and Ochrobactrum sp. MPV1 were isolated from the rhizosphere soil of the selenium-hyperaccumulator legume Astragalus bisulcatus and waste material from a dumping site for roasted pyrites, respectively. Here, these bacterial strains were studied as cell factories to generate selenium-nanostructures (SeNS) under metabolically controlled growth conditions. Thus, a defined medium (DM) containing either glucose or pyruvate as carbon and energy source along with selenite () was tested to evaluate bacterial growth, oxyanion bioconversion and changes occurring in SeNS features with respect to those generated by these strains grown on rich media. Transmission electron microscopy (TEM) images show extra- or intra-cellular emergence of SeNS in SeITE02 or MPV1 respectively, revealing the presence of two distinct biological routes of SeNS biogenesis. Indeed, the stress exerted by upon SeITE02 cells triggered the production of membrane vesicles (MVs), which surrounded Se-nanoparticles (SeNPsSeITE02-G_e and SeNPsSeITE02-P_e with average diameter of 179 ± 56 and 208 ± 60 nm, respectively), as highlighted by TEM and scanning electron microscopy (SEM), strongly suggesting that MVs might play a crucial role in the excreting mechanism of the SeNPs in the extracellular environment. On the other hand, MPV1 strain biosynthesized intracellular inclusions likely containing hydrophobic storage compounds and SeNPs (123 ± 32 nm) under pyruvate conditioning, while the growth on glucose as the only source of carbon and energy led to the production of a mixed population of intracellular SeNPs (118 ± 36 nm) and nanorods (SeNRs; average length of 324 ± 89). SEM, fluorescence spectroscopy, and confocal laser scanning microscopy (CLSM) revealed that the biogenic SeNS were enclosed in an organic material containing proteins and amphiphilic molecules, possibly responsible for the high thermodynamic stability of these nanomaterials. Finally, the biogenic SeNS extracts were photoluminescent upon excitation ranging from 380 to 530 nm, whose degree of fluorescence emission (λem = 416-640 nm) was comparable to that from chemically synthesized SeNPs with L-cysteine (L-cys SeNPs). This study offers novel insights into the formation, localization, and release of biogenic SeNS generated by two different Gram-negative bacterial strains under aerobic and metabolically controlled growth conditions. The work strengthens the possibility of using these bacterial isolates as eco-friendly biocatalysts to produce high quality SeNS targeted to possible biomedical applications and other biotechnological purposes.

6.
Anal Bioanal Chem ; 409(26): 6253-6261, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28815273

ABSTRACT

The integration of molecularly imprinted polymers (MIPs) with MALDI-TOF mass spectrometry (MS) combines MIP selectivity with MS sensitivity. Whether the size of the MIP material-micro versus nano-has an effect on the MS analysis was the object of the study. MIPs, targeting respectively the epitope peptide NR11 of cardiac troponin I and the peptide CK13 of human serum transferrin, were synthesized and characterized. The size-related performance of the MIP materials hyphenated with MALDI-TOF-MS analysis was studied by the incubation of the target peptide with the respective micro- or nano-MIP, followed by rinsing to remove non-specific deposition of the MIP to the MALDI target plate, co-crystallization with the organic matrix, and mass analysis. The quality of the MS analysis was assessed comparing the S/N of the mass peaks of the MIP-bound peptide to that of the same quantity of free peptide. Sweet spots and lower S/N (~ 1 order of magnitude) were observed for micro-MIP materials, while in the case of nano-MIP-bound peptide, the S/N was comparable to that of the free peptide, indicating higher compatibility of the nano-MIPs to MALDI-TOF-MS. The nano-MIP/MALDI-TOF-MS permitted the selective determination of the target peptide in real serum samples. Graphical abstract ᅟ.


Subject(s)
Molecular Imprinting/methods , Peptides/blood , Polymers/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Crystallization , Humans , Nanostructures/chemistry , Peptides/analysis , Peptides/isolation & purification , Solid Phase Extraction/methods
7.
ACS Appl Mater Interfaces ; 9(8): 6908-6915, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28151640

ABSTRACT

Molecular imprinted poly(acrylamido)-derivative nanogels have shown their selectivity to bind the protein human serum transferrin (HTR) and also showed their capability for instantaneous solvent-induced modification upon the addition of acetonitrile. Integrated to matrix-assisted laser desorption/ionization time-of-flight mass analysis the HTR-imprinted solvent-responsive nanogels permitted the determination of HTR straight from serum and offered novel perspectives in targeted protein analysis.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Molecular Imprinting , Nanoparticles , Polyethylene Glycols , Polyethyleneimine , Solvents
8.
J Control Release ; 248: 144-152, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28093297

ABSTRACT

Nanomedicine requires intelligent and non-toxic nanomaterials for real clinical applications. Carbon materials possess interesting properties but with some limitations due to toxic effects. Interest in carbon nanoparticles (CNPs) is increasing because they are considered green materials with tunable optical properties, overcoming the problem of toxicity associated with quantum dots or nanocrystals, and can be utilized as smart drug delivery systems. Using black tea as a raw material, we synthesized CNPs with a narrow size distribution, tunable optical properties covering visible to deep red absorption, non-toxicity and easy synthesis for large-scale production. We utilized these CNPs to label subcellular structures such as exosomes. More importantly, these new CNPs can escape lysosomal sequestration and rapidly distribute themselves in the cytoplasm to release doxorubicin (doxo) with better efficacy than the free drug. The release of doxo from CNPs was optimal at low pH, similar to the tumour microenvironment. These CNPs were non-toxic in mice and reduced the tumour burden when loaded with doxo due to an improved pharmacokinetics profile. In summary, we created a new delivery system that is potentially useful for improving cancer treatments and opening a new window for tagging microvesicles utilized in liquid biopsies.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Carbon/chemistry , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Nanoparticles/chemistry , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Drug Delivery Systems , Female , Humans , Mice, Nude , Neoplasms/drug therapy
9.
Anal Bioanal Chem ; 408(13): 3435-43, 2016 May.
Article in English | MEDLINE | ID: mdl-26960903

ABSTRACT

In response to the need for straightforward analytical methods to assess the affinity of molecularly imprinted nanoparticles (MIP NPs) for ligands, capillary electrophoresis (CE) was exploited using MIP NPs targeting the iron-regulating hormone hepcidin. In this work, MIP NPs were challenged with their template peptide, i.e., the N-terminal 5-mer of hepcidin, in comparison to unrelated ligand peptides. A CE separation method was developed ex novo achieving, after optimization of the background electrolyte (150 mM sodium phosphate pH 7.4) and of the running temperature (35 °C), the full separation of the free ligand from the complexed MIP NPs. The CE binding isotherm allowed the estimation of a micromolar dissociation constant for the 5-mer template-MIP NPs complex, in agreement with independent measurements. The CE offered the advantages of a direct injection of the MIP NPs/ligand incubation mix, without preliminary fractionation steps, requiring only minimal sample volumes and short analysis times. In conclusion CE proved to be a valid technique for characterizing the interactions of MIP NP libraries for selected target compounds.


Subject(s)
Electrophoresis, Capillary/methods , Molecular Imprinting/methods , Nanoparticles , Binding Sites , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Ligands , Temperature
10.
J Mater Chem B ; 3(36): 7300-7306, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-32262838

ABSTRACT

Nanocarriers as theranostic agents are under the spotlight in modern nanomedicine, and mesoporous nanomaterials represent a class of devices of major interest. Zirconia is biocompatible, inert with good mechanical and thermal properties for in vivo biomedical applications. Although a few examples of zirconia nanoparticles have been described, a major limitation was the low surface area, which is fundamental for payload transport. Here, a simple and highly efficient method is described for the synthesis of spherical mesoporous zirconia nanoparticles (MZNs) with a high surface area through a neutral surfactant-assisted sol-gel method. The combination of alkali halides and vacuum extraction allowed stabilization of the shape and size of MZNs and to avoid porous network failure, respectively. In comparison to published synthesis procedures, a high surface area has been obtained. Biological experiments demonstrated that MZNs were biocompatible, cell permeable and degradable providing a proof of concept for theranostic applications. A comparison with the properties of mesoporous silica nanoparticles has also been performed.

11.
Biochem J ; 438(2): 291-301, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21639858

ABSTRACT

The SOUL protein is known to induce apoptosis by provoking the mitochondrial permeability transition, and a sequence homologous with the BH3 (Bcl-2 homology 3) domains has recently been identified in the protein, thus making it a potential new member of the BH3-only protein family. In the present study, we provide NMR, SPR (surface plasmon resonance) and crystallographic evidence that a peptide spanning residues 147-172 in SOUL interacts with the anti-apoptotic protein Bcl-xL. We have crystallized SOUL alone and the complex of its BH3 domain peptide with Bcl-xL, and solved their three-dimensional structures. The SOUL monomer is a single domain organized as a distorted ß-barrel with eight anti-parallel strands and two α-helices. The BH3 domain extends across 15 residues at the end of the second helix and eight amino acids in the chain following it. There are important structural differences in the BH3 domain in the intact SOUL molecule and the same sequence bound to Bcl-xL.


Subject(s)
Apoptosis , Hemeproteins/chemistry , Hemeproteins/metabolism , Pregnancy Proteins/chemistry , Pregnancy Proteins/metabolism , bcl-X Protein/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Heme-Binding Proteins , Hemin/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship , bcl-X Protein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...