Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Eur J Clin Invest ; : e14266, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864773

ABSTRACT

BACKGROUND: Pregnancy represents a window of vulnerability to fetal development. Disruptions in the prenatal environment during this crucial period can increase the risk of the offspring developing diseases over the course of their lifetime. The central nervous system (CNS) has been shown to be particularly susceptible to changes during crucial developmental windows. To date, research focused on disruptions in the development of the CNS has predominantly centred on the brain, revealing a correlation between exposure to prenatal risk factors and the onset of neuropsychiatric disorders. Nevertheless, some studies indicate that the retina, which is part of the CNS, is also vulnerable to in utero alterations during pregnancy. Such changes may affect neuronal, glial and vascular components of the retina, compromising retinal structure and function and possibly impairing visual function. METHODS: A search in the PubMed database was performed, and any literature concerning prenatal risk factors (drugs, diabetes, unbalanced diet, infection, glucocorticoids) affecting the offspring retina were included. RESULTS: This review collects evidence on the cellular, structural and functional changes occurring in the retina triggered by maternal risk factors during pregnancy. We highlight the adverse impact on retinal development and its long-lasting effects, providing a critical analysis of the current knowledge while underlining areas for future research. CONCLUSIONS: Appropriate recognition of the prenatal risk factors that negatively impact the developing retina may provide critical clues for the design of preventive strategies and for early therapeutic intervention that could change retinal pathology in the progeny.

2.
J Biomed Sci ; 31(1): 48, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730462

ABSTRACT

Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.


Subject(s)
Blood-Retinal Barrier , Extracellular Vesicles , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/physiopathology , Extracellular Vesicles/metabolism , Humans , Diabetic Retinopathy/physiopathology , Diabetic Retinopathy/metabolism , Retinal Diseases/physiopathology , Retinal Diseases/metabolism , Macular Degeneration/physiopathology , Macular Degeneration/metabolism , Animals
4.
Cell Biosci ; 14(1): 5, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183095

ABSTRACT

BACKGROUND: Glaucoma, a progressive neurodegenerative disease, is a leading cause of irreversible vision loss worldwide. This study aims to elucidate the critical role of Müller glia (MG) in the context of retinal ganglion cell (RGC) death, particularly focusing on the influence of peripheral MG sensitivity to high pressure (HP). METHODS: Co-cultures of porcine RGCs with MG were isolated from both the central and peripheral regions of pig retinas and subjected to both normal and HP conditions. Mass spectrometry analysis of the MG-conditioned medium was conducted to identify the proteins released by MG under all conditions. RESULTS: Peripheral MG were found to secrete a higher quantity of neuroprotective factors, effectively promoting RGC survival under normal physiological conditions. However, under HP conditions, co-cultures with peripheral MG exhibited impaired RGC survival. Moreover, under HP conditions, peripheral MG significantly upregulated the secretion of proteins associated with apoptosis, oxidative stress, and inflammation. CONCLUSIONS: This study provides robust evidence suggesting the involvement of MG in RGC death in glaucoma, thus paving the way for future therapeutic investigations.

5.
Nanophotonics ; 13(2): 229-238, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38283896

ABSTRACT

Photo-induced isomerization of azobenzene molecules drives mass migrations in azopolymer samples. The resulting macroscopic directional photo-deformation of the material morphology has found many applications in literature, although the fundamental mechanisms behind this mass transfer are still under debate. Hence, it is of paramount importance to find quantitative observables that could drive the community toward a better understanding of this phenomenon. In this regard, azopolymer mechanical properties have been intensively studied, but the lack of a nanoscale technique capable of quantitative viscoelastic measurements has delayed the progress in the field. Here, we use bimodal atomic force microscopy (AFM) as a powerful technique for nanomechanical characterizations of azopolymers. With this multifrequency AFM approach, we map the azopolymer local elasticity and viscosity, with high resolution, after irradiation. We find that, while in the (previously) illuminated region, a general photo-softening is measured; locally, the Young modulus and the viscosity depend upon the inner structuring of the illuminating light spot. We then propose a possible interpretation based on a light-induced expansion plus a local alignment of the polymer chains (directional hole-burning effect), which explains the experimental observations. The possibility to access, in a reliable and quantitative way, both Young modulus and viscosity could trigger new theoretical-numerical investigations on the azopolymer mass migration dynamics since, as we show, both parameters can be considered measurable. Furthermore, our results provide a route for engineering the nanomechanical properties of azopolymers, which could find interesting applications in cell mechanobiology research.

6.
Cell Rep ; 42(12): 113447, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37980559

ABSTRACT

Microglia, the largest population of brain immune cells, continuously interact with synapses to maintain brain homeostasis. In this study, we use conditional cell-specific gene targeting in mice with multi-omics approaches and demonstrate that the RhoGTPase Rac1 is an essential requirement for microglia to sense and interpret the brain microenvironment. This is crucial for microglia-synapse crosstalk that drives experience-dependent plasticity, a fundamental brain property impaired in several neuropsychiatric disorders. Phosphoproteomics profiling detects a large modulation of RhoGTPase signaling, predominantly of Rac1, in microglia of mice exposed to an environmental enrichment protocol known to induce experience-dependent brain plasticity and cognitive performance. Ablation of microglial Rac1 affects pathways involved in microglia-synapse communication, disrupts experience-dependent synaptic remodeling, and blocks the gains in learning, memory, and sociability induced by environmental enrichment. Our results reveal microglial Rac1 as a central regulator of pathways involved in the microglia-synapse crosstalk required for experience-dependent synaptic plasticity and cognitive performance.


Subject(s)
Brain , Cognition , Microglia , Neuronal Plasticity , Neuropeptides , rac1 GTP-Binding Protein , Microglia/metabolism , Cognition/physiology , Animals , Mice , Neuropeptides/genetics , Neuropeptides/physiology , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/physiology , Male , Female , Mice, Mutant Strains , Synapses/physiology , Brain/physiology , Gene Knockdown Techniques
7.
Exp Eye Res ; 235: 109627, 2023 10.
Article in English | MEDLINE | ID: mdl-37619829

ABSTRACT

The main purpose of this study is to analyze the effects of unilateral optic nerve crush in the gene expression of pro- and anti-inflammatory mediators, and gliosis markers in injured and contralateral retinas. Retinas from intact, unilaterally optic nerve injured or sham-operated C57BL/6J mice were analyzed 1, 3, 9 and 30 days after the surgery (n = 5/group and time point) and the relative expression of TGF-ß1, IL-1ß, TNF-α, Iba1, AQP4, GFAP, MHCII, and TSPO was analyzed in injured and contralateral using qPCR. The results indicated that compared with intact retinas, sham-operated animals showed an early (day 1) upregulation of IL-1ß, TNF-α and TSPO and a late (day 30) upregulation of TNF-α. In sham-contralateral retinas, TNF-α and TSPO mRNA expression were upregulated and day 30 while GFAP, Iba1, AQP4 and MHCII downregulated at day 9. Compared with sham-operated animals, in retinas affected by optic nerve crush GFAP and TSPO upregulated at day 1 and TNF-α, Iba1, AQP4 and MHCII at day 3. In the crushed-contralateral retinas, TGF-ß1, TNF-α, Iba1 and MHCII were upregulated at day 1. TSPO was upregulated up to day 30 whereas TGF-ß1 and Iba1 downregulated after day 9. In conclusion, both sham surgery and optic nerve crush changed the profile of inflammatory and gliosis markers in the injured and contralateral retinas, changes that were more pronounced for optic nerve crush when compared to sham.


Subject(s)
Optic Nerve Injuries , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/pharmacology , Retinal Ganglion Cells/metabolism , Gliosis/metabolism , Optic Nerve Injuries/genetics , Optic Nerve Injuries/metabolism , Neuroinflammatory Diseases , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Retina/metabolism , Optic Nerve/metabolism , Nerve Crush/methods
8.
Cell Rep ; 42(8): 112816, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37505981

ABSTRACT

Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families). The tumorigenic potential of each GSC better correlates with its transcriptional profile than its genetic make-up, with classical GSCs being inherently more aggressive and mesenchymal more dependent on exogenous growth factors across multiple GBMs. These GSCs can segregate and recapitulate different histopathological aspects of the same GBM, as shown in a paradigmatic tumor with two histopathologically distinct components, including a conventional GBM and a more aggressive primitive neuronal component. This study provides a resource for investigating how GSCs with distinct genetic and/or phenotypic features contribute to individual GBM heterogeneity and malignant escalation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain Neoplasms/metabolism , Gene Amplification , Neoplastic Stem Cells/metabolism , Carcinogenesis/pathology , Cell Line, Tumor
9.
Eur J Cell Biol ; 102(2): 151333, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37327741

ABSTRACT

Nuclear Dbf2-related (NDR) kinases are a subgroup of evolutionarily conserved AGC protein kinases that regulate various aspects of cell growth and morphogenesis. There are 4 NDR protein kinases in mammals, LATS1, LATS2 and STTK8/NDR1, STK38L/NDR2 protein kinases. LATS1 and 2 are core components of the well-studied Hippo pathway, which play a critical role in the regulation of cell proliferation, differentiation, and cell migration via YAP/TAZ transcription factor. The Hippo pathways play an important role in nervous tissue development and homeostasis, especially with regard to the central nervous system (CNS) and the ocular system. The ocular system is a very complex system generated by the interaction in a very tightly coordinated manner of numerous and diverse developing tissues, such as, but not limited to choroidal and retinal blood vessels, the retinal pigmented epithelium and the retina, a highly polarized neuronal tissue. The retina development and maintenance require precise and coordinated regulation of cell proliferation, cell death, migration, morphogenesis, synaptic connectivity, and balanced homeostasis. This review highlights the emerging roles of NDR1 and NDR2 kinases in the regulation of retinal/neuronal function and homeostasis via a noncanonical branch of the Hippo pathway. We highlight a potential role of NDR1 and NDR2 kinases in regulating neuronal inflammation and as potential therapeutic targets for the treatment of neuronal diseases.


Subject(s)
Neurobiology , Protein Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Cell Proliferation , Cell Differentiation , Central Nervous System/metabolism , Mammals/metabolism
10.
Life Sci ; 327: 121852, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37321535

ABSTRACT

AIMS: Maternal diabetes negatively impacts the offspring's brain, but little is known about its effects on the retina, which is also part of the central nervous system. We hypothesized that maternal diabetes adversely influences offspring retina development leading to structural and functional deficits. MAIN METHODS: Retinal structure and function were evaluated at infancy, by optical coherence tomography and electroretinography, in male and female offspring of control, diabetic and diabetic-treated with insulin Wistar rats. KEY FINDINGS: Maternal diabetes induced a delay in male and female offspring eye-opening, while insulin treatment expedited it. Structural analysis showed that maternal diabetes decreased the thickness of the inner and outer segment layer of photoreceptors in male offspring. Electroretinography also revealed that maternal diabetes decreased the amplitude of scotopic b-wave and flicker response in males, suggesting bipolar cells and cone photoreceptor dysfunction, an effect not observed in females. Conversely, maternal diabetes decreased cone arrestin protein levels in female retinas, while not affecting cone photoreceptor number. Dam insulin therapy was efficient in preventing the offspring photoreceptor changes. SIGNIFICANCE: Our results suggest that photoreceptors are affected by maternal diabetes, which may account for visual impairments at infancy. Notably, both male and female offspring presented specific vulnerabilities to hyperglycemia in this sensitive period of development.


Subject(s)
Diabetes, Gestational , Insulins , Humans , Pregnancy , Rats , Male , Female , Animals , Rats, Wistar , Retina , Retinal Cone Photoreceptor Cells/physiology , Electroretinography
11.
Chem Mater ; 35(9): 3722-3730, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181674

ABSTRACT

Real-time manipulation of light in a diffractive optical element made with an azomaterial, through the light-induced reconfiguration of its surface based on mass transport, is an ambitious goal that may enable new applications and technologies. The speed and the control over photopatterning/reconfiguration of such devices are critically dependent on the photoresponsiveness of the material to the structuring light pattern and on the required extent of mass transport. In this regard, the higher the refractive index (RI) of the optical medium, the lower the total thickness and inscription time can be. In this work, we explore a flexible design of photopatternable azomaterials based on hierarchically ordered supramolecular interactions, used to construct dendrimer-like structures by mixing specially designed sulfur-rich, high-refractive-index photoactive and photopassive components in solution. We demonstrate that thioglycolic-type carboxylic acid groups can be selectively used as part of a supramolecular synthon based on hydrogen bonding or readily converted to carboxylate and participate in a Zn(II)-carboxylate interaction to modify the structure of the material and fine-tune the quality and efficiency of photoinduced mass transport. Compared with a conventional azopolymer, we demonstrate that it is possible to fabricate high-quality, thinner flat diffractive optical elements to reach the desired diffraction efficiency by increasing the RI of the material, achieved by maximizing the content of high molar refraction groups in the chemical structure of the monomers.

12.
Heart Fail Rev ; 28(5): 1151-1161, 2023 09.
Article in English | MEDLINE | ID: mdl-37162633

ABSTRACT

BACKGROUND: In patients affected by heart failure (HF) with reduced ejection fraction (HFrEF), pharmacological treatments have been proven to alleviate symptoms and improve prognosis, while no treatment other than sodium-glucose co-transporter-2 inhibitors have demonstrated significant effects in HF with preserved ejection fraction (HFpEF). Left atrium decompression devices (LADd) have been recently investigated as a new interventional approach in patients with HFpEF. OBJECTIVES: To assess the efficacy of LADd on soft endpoints in HF patients across the spectrum of ejection fraction. METHODS: PubMed and Web of Science were searched without restrictions from inception to 28 May 2022 to identify valuable articles. The studies that met the inclusion criteria were analyzed. The prespecified main outcomes were the change from baseline in 6-min walking distance (6MWD), NYHA class and health-related quality of life (HRQoL). Secondary outcomes were reduction in HF hospitalizations, echocardiographic, and hemodynamic parameters. RESULTS: Eleven studies, with a total of 547 patients, were included. LADd significantly improved 6MWD by 43.95 m (95% CI 29.64-58.26 m), decreased NYHA class by 0.93 (95% CI 1.20-0.67), and improved HRQoL questionnaire by 20.45 points (95% CI 13.77-27.14) with better results for all outcomes in patients with lower EFs. CONCLUSION: The present meta-analysis suggests that LADd are favorable in improving 6MWD, NYHA class, and HRQoL in HF across a wide spectrum of ejection fraction, with better outcomes in patients with lower EFs. TRIAL REGISTRATION: CRD42022336077, URL: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=336077 .


Subject(s)
Heart Failure , Humans , Heart Failure/therapy , Stroke Volume , Quality of Life , Prognosis , Decompression
13.
Front Aging Neurosci ; 15: 1161847, 2023.
Article in English | MEDLINE | ID: mdl-37091517

ABSTRACT

Animal models of disease are paramount to understand retinal development, the pathophysiology of eye diseases, and to study neurodegeneration using optical coherence tomography (OCT) data. In this study, we present a comprehensive normative database of retinal thickness in C57BL6/129S mice using spectral-domain OCT data. The database covers a longitudinal period of 16 months, from 1 to 16 months of age, and provides valuable insights into retinal development and changes over time. Our findings reveal that total retinal thickness decreases with age, while the thickness of individual retinal layers and layer aggregates changes in different ways. For example, the outer plexiform layer (OPL), photoreceptor inner segments (ILS), and retinal pigment epithelium (RPE) thickened over time, whereas other retinal layers and layer aggregates became thinner. Additionally, we compare the retinal thickness of wild-type (WT) mice with an animal model of Alzheimer's disease (3 × Tg-AD) and show that the transgenic mice exhibit a decrease in total retinal thickness compared to age-matched WT mice, with statistically significant differences observed at all evaluated ages. This normative database of retinal thickness in mice will serve as a reference for future studies on retinal changes in neurodegenerative and eye diseases and will further our understanding of the pathophysiology of these conditions.

14.
Antioxidants (Basel) ; 12(4)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37107312

ABSTRACT

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent neurodevelopmental disorders. Interestingly, children with ADHD seem to experience more ophthalmologic abnormalities, and the impact of methylphenidate (MPH) use on retinal physiology remains unclear. Thus, we aimed to unravel the retina's structural, functional, and cellular alterations and the impact of MPH in ADHD versus the control conditions. For that, spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) were used as animal models of ADHD and the controls, respectively. Animals were divided into four experimental groups as follows: WKY vehicle (Veh; tap water), WKY MPH (1.5 mg/kg/day), SHR Veh, SHR MPH. Individual administration was performed by gavage between P28-P55. Retinal physiology and structure were evaluated at P56 followed by tissue collection and analysis. The ADHD animal model presents the retinal structural, functional, and neuronal deficits, as well as the microglial reactivity, astrogliosis, blood-retinal barrier (BRB) hyperpermeability and a pro-inflammatory status. In this model, MPH had a beneficial effect on reducing microgliosis, BRB dysfunction, and inflammatory response, but did not correct the neuronal and functional alterations in the retina. Curiously, in the control animals, MPH showed an opposite effect since it impaired the retinal function, neuronal cells, and BRB integrity, and also promoted both microglia reactivity and upregulation of pro-inflammatory mediators. This study unveils the retinal alterations in ADHD and the opposite effects induced by MPH in the retina of ADHD and the control animal models.

15.
Mol Oncol ; 17(7): 1280-1301, 2023 07.
Article in English | MEDLINE | ID: mdl-36862005

ABSTRACT

In colorectal cancer, the mechanisms underlying tumor aggressiveness require further elucidation. Taking advantage of a large panel of human metastatic colorectal cancer xenografts and matched stem-like cell cultures (m-colospheres), here we show that the overexpression of microRNA 483-3p (miRNA-483-3p; also known as MIR-483-3p), encoded by a frequently amplified gene locus, confers an aggressive phenotype. In m-colospheres, endogenous or ectopic miRNA-483-3p overexpression increased proliferative response, invasiveness, stem cell frequency, and resistance to differentiation. Transcriptomic analyses and functional validation found that miRNA-483-3p directly targets NDRG1, known as a metastasis suppressor involved in EGFR family downregulation. Mechanistically, miRNA-483-3p overexpression induced the signaling pathway triggered by ERBB3, including AKT and GSK3ß, and led to the activation of transcription factors regulating epithelial-mesenchymal transition (EMT). Consistently, treatment with selective anti-ERBB3 antibodies counteracted the invasive growth of miRNA-483-3p-overexpressing m-colospheres. In human colorectal tumors, miRNA-483-3p expression inversely correlated with NDRG1 and directly correlated with EMT transcription factor expression and poor prognosis. These results unveil a previously unrecognized link between miRNA-483-3p, NDRG1, and ERBB3-AKT signaling that can directly support colorectal cancer invasion and is amenable to therapeutic targeting.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , MicroRNAs , Rectal Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Down-Regulation/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/pathology , Colonic Neoplasms/genetics , Transcription Factors/metabolism , Rectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Neoplasm Invasiveness/genetics
16.
Ophthalmic Genet ; 44(4): 334-340, 2023 08.
Article in English | MEDLINE | ID: mdl-36946380

ABSTRACT

PURPOSE: To evaluate self-reported visual function and the psychosocial impact of visual loss EYS-associated retinal degeneration (EYS-RD) using two patient-reported outcome (PRO) measures: Michigan Retinal Degeneration Questionnaire (MRDQ) and Michigan Vision-related Anxiety Questionnaire (MVAQ). METHODS: Cross-sectional, single-center study conducted at a tertiary care hospital in Portugal. Patients with biallelic EYS variants were invited to participate. Clinical data including demographics, ETDRS best-corrected visual acuity (BCVA) in the better-seeing eye and genetic testing results were collected. Interviews were carried out during clinic visits or by phone between November 2021 and February 2022. A blind grader used horizontal and vertical spectral domain optical coherence tomography (SD-OCT) scans to manually measure ellipsoid zone (EZ) width in the nasal, temporal, superior and inferior macular quadrants to calculate the EZ area. RESULTS: Forty-nine patients (53.1% males; mean age 53 ± 14 years) were included. A positive correlation (p < .05) was found between age and most MRDQ domain scores (central vision, color vision, contrast sensitivity, scotopic function, photopic peripheral vision and mesopic peripheral vision). A negative correlation was found between both BCVA and EZ area across all MRDQ domains. In MVAQ, SD-OCT EZ area negatively correlated with both rod function and cone function-related anxiety. Neither age, BCVA or gender correlated with MVAQ domains. CONCLUSIONS: This study provides strong evidence supporting a correlation between PRO measures and both functional and structural clinician-reported outcomes. The use of MRDQ and MVAQ adds a new dimension to our understanding of EYS-RD and establishes both PRO measures as important disease outcome measures.


Subject(s)
Retinal Degeneration , Male , Humans , Adult , Middle Aged , Aged , Female , Retinal Degeneration/genetics , Portugal , Self Report , Cross-Sectional Studies , Visual Acuity , Vision Disorders , Tomography, Optical Coherence/methods , Eye Proteins/genetics
17.
Front Endocrinol (Lausanne) ; 14: 1102068, 2023.
Article in English | MEDLINE | ID: mdl-36926023

ABSTRACT

The involvement of immunity in psychiatric disorders, such as anxiety, is typified by the morphologic adaptation of microglia, immune cells of the brain, to anxiogenic stimuli. We previously reported sexually differentiated microglia morphology in adult rodents, in brain locations implicated in anxiety, including the pre-frontal cortex. These physiologic differences likely drive sex-dependent patterns of microglia morphologic remodeling in response to varied stress conditions in different periods of life, that correlate with sex-dependent behavioral adaptation to anxiogenic stimuli. The time-window of appearance of sex differences in microglia, correlating with sex-specific behavioral performance in anxiogenic conditions are still unknown. In rodents, a postnatal peak of the sexual hormone testosterone is determinant for the so-called brain masculinization and sex-determined behavioral traits. In the present work we aim to clarify if differences in microglia morphology are present at birth or can be driven by postnatal testosterone and impacts on the ability to deal with an anxiogenic context. Differences in microglia morphology are not present at birth, but are observable at adolescence (increased complexity of male microglia, particularly in branches more proximal to the soma), when differences in behavior are also observed. Our data also show that adolescent females neonatally treated with testosterone exhibit masculinized microglia and behavior. Importantly, between adolescence and adulthood, a sex-determined shift in the pattern of complexity takes place and microglia from females become more complex. When testosterone is administered, this morphological effect is partially abolished, approximating microglia and behavior to the male phenotype.


Subject(s)
Microglia , Testosterone , Animals , Female , Male , Testosterone/pharmacology , Behavior, Animal , Sexual Behavior, Animal , Brain/physiology
19.
Antioxidants (Basel) ; 12(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36829938

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of severe vision loss and blindness in elderly people worldwide. The damage to the retinal pigment epithelium (RPE) triggered by oxidative stress plays a central role in the onset and progression of AMD and results from the excessive accumulation of reactive oxygen species (ROS) produced mainly by mitochondria. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial molecular chaperone that contributes to the maintenance of mitochondrial integrity by decreasing the production and accumulation of ROS. The present study aimed to evaluate the presence and the role of TRAP1 in the RPE. Here, we report that TRAP1 is expressed in human adult retinal pigment epithelial cells and is located mainly in the mitochondria. Exposure of RPE cells to hydrogen peroxide decreases the levels of TRAP1. Furthermore, TRAP1 silencing increases intracellular ROS production and decreases mitochondrial respiratory capacity without affecting cell proliferation. Together, these findings offer novel insights into TRAP1 functions in RPE cells, opening possibilities to develop new treatment options for AMD.

20.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834893

ABSTRACT

Retinal organotypic cultures (ROCs) are used as an in vivo surrogate to study retinal ganglion cell (RGC) loss and neuroprotection. In vivo, the gold standard to study RGC degeneration and neuroprotection is optic nerve lesion. We propose here to compare the course of RGC death and glial activation between both models. The left optic nerve of C57BL/6 male mice was crushed, and retinas analyzed from 1 to 9 days after the injury. ROCs were analyzed at the same time points. As a control, intact retinas were used. Retinas were studied anatomically to assess RGC survival, microglial, and macroglial activation. Macroglial and microglial cells showed different morphological activation between models and were activated earlier in ROCs. Furthermore, microglial cell density in the ganglion cell layer was always lower in ROCs than in vivo. RGC loss after axotomy and in vitro followed the same trend up to 5 days. Thereafter, there was an abrupt decrease in viable RGCs in ROCs. However, RGC somas were still immuno-identified by several molecular markers. ROCs are useful for proof-of-concept studies on neuroprotection, but long-term experiments should be carried out in vivo. Importantly, the differential glial activation observed between models and the concomitant death of photoreceptors that occurs in vitro may alter the efficacy of RGC neuroprotective therapies when tested in in vivo models of optic nerve injury.


Subject(s)
Microphysiological Systems , Optic Nerve Injuries , Mice , Animals , Male , Mice, Inbred C57BL , Retina/metabolism , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/metabolism , Axotomy , Cell Survival
SELECTION OF CITATIONS
SEARCH DETAIL
...