Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 36(32): 9674-80, 1997 Aug 12.
Article in English | MEDLINE | ID: mdl-9245399

ABSTRACT

S100 beta is a member of a group of low-molecular weight acidic calcium binding proteins widely distributed in the vertebrate nervous system containing two helix-loop-helix calcium binding motifs (sites I and II). In addition, S100 beta also has auxiliary Zn2+ binding sites that are distinct from the Ca2+ binding sites. Luminescence spectroscopy using Eu3+ and Tb3+ as spectroscopic probes for Ca2+ is used to characterize the Ca2+ binding sites of this protein. Eu3+-bound S100 beta shows two distinct Eu3+ binding environments from both the excitation spectrum and Eu3+ excited state lifetimes. Eu3+ bound to the classical EF hand site II has a Kd of 660 +/- 20 nM, whereas the dissociation constant for the pseudo-EF hand site I is significantly weaker. Lifetimes in H2O and D2O lead to the finding that there are four water molecules coordinated to the Eu3+ in the weakly binding site I and two water molecules to the tightly binding site II. Site II in S100 beta expectedly is very similar to high-affinity Ln3+ binding domains I and II in calmodulin. Eu3+ luminescence experiments with Zn2+-loaded S100 beta show that the lifetime for Eu3+ in site I in Zn2+-loaded S100 beta is significantly different than that in the absence of Zn2+. Tyrosine-17-sensitized Tb3+ luminescence experiments indicate that the Tb3+ occupying the proximal weaker binding site I is sensitized, whereas Tb3+ in site II is not. The distance between sites I and II (15.0 +/- 0.4 A) in S100 beta was determined from Forster-type energy transfer in D2O solutions containing bound Eu3+ donor and Nd3+ acceptor ions. For Zn2+-S100 beta, the intersite distance is reduced to 13 +/- 0.3 A. Location of histidine-15 close to pseudo-EF site I suggests that Zn2+ binding likely changes the conformation of this site, causing a reduction of the intersite distance by approximately 2 A.


Subject(s)
Calcium-Binding Proteins/metabolism , Metals, Rare Earth/metabolism , S100 Proteins/metabolism , Amino Acid Sequence , Animals , Calcium-Binding Proteins/chemistry , Energy Transfer , Europium/metabolism , Luminescent Measurements , Neodymium/metabolism , Nerve Growth Factors , Protein Binding , Rats , S100 Calcium Binding Protein beta Subunit , S100 Proteins/chemistry , Spectrum Analysis , Structure-Activity Relationship , Terbium/metabolism , Zinc/metabolism
2.
Biochemistry ; 35(36): 11577-88, 1996 Sep 10.
Article in English | MEDLINE | ID: mdl-8794737

ABSTRACT

S100B(beta beta), a member of the S100 protein family, is a Ca(2+)-binding protein with noncovalent interactions at its dimer interface. Each apo-S100 beta subunit (91 residues) has four alpha-helices and a small antiparallel beta-sheet, consistent with two predicted helix-loop-helix Ca(2+)-binding domains known as EF-hands [Amburgey et al. (1995) J. Biomol. NMR 6, 171-179]. The three-dimensional solution structure of apo-S100B(beta beta) from rat has been determined using 2672 distance (14.7 per residue) and 88 dihedral angle restraints derived from multidimensional nuclear magnetic resonance spectroscopy. Apo-S100B (beta beta) is found to be globular and compact with an extensive hydrophobic core and a highly charged surface, consistent with its high solubility. At the symmetric dimer interface, 172 intermolecular nuclear Overhauser effect correlations (NOEs) define the antiparallel alignment of helix I with I' and of helix IV with IV'. The perpendicular association of these pairs of antiparallel helices forms an X-type four-helical bundle at the dimer interface. Whereas, the four helices within each apo-S100 beta subunit adopt a unicornate-type four-helix bundle, with helix I protruding from the parallel bundle of helices II, III, and IV. Accordingly, the orientation of helix III relative to helices I, II, and IV in each subunit differs significantly from that known for other Ca(2+)-binding proteins. Indeed, the interhelical angle (omega) observed in the C-terminal EF-hand of apo-S100 beta is -142 degrees, whereas omega ranges from 118 degrees to 145 degrees in the apo state and from 84 degrees to 128 degrees in the Ca(2+)-bound state for the EF-hands of calbindin D9k, calcyclin, and calmodulin. Thus, a significant conformational change in the C-terminal EF-hand would be required for it to adopt a structure typical of the Ca(2+)-bound state, which could readily explain the dramatic spectral effects observed upon the addition of Ca2+ to apo-S100B(beta beta).


Subject(s)
Apoproteins/chemistry , Calcium-Binding Proteins/chemistry , Protein Conformation , S100 Proteins/chemistry , Amino Acid Sequence , Animals , Calbindins , Calcium/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Nerve Growth Factors , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , S100 Calcium Binding Protein G/chemistry , S100 Calcium Binding Protein beta Subunit , Sequence Alignment
3.
J Biomol NMR ; 6(2): 171-9, 1995 Sep.
Article in English | MEDLINE | ID: mdl-8589606

ABSTRACT

The 1H, 13C and 15N NMR assignments of the backbone and side-chain resonances of rat S100 beta were made at pH 6.5 and 37 degrees C using heteronuclear multidimensional NMR spectroscopy. Analysis of the NOE correlations, together with amide exchange rate and 1H alpha, 13C alpha and 13C beta chemical shift data, provided extensive secondary structural information. Thus, the secondary structure of S100 beta was determined to comprise four helices (Leu3-Ser18, helix I; Lys29-Leu40, helix II; Gln50-Glu62, helix III; and Phe70-Ala83, helix IV), four loops (Gly19-His25, loop I; Ser41-Glu49, loop II; Asp63-Gly66, loop III; and Cys84-Glu91, loop IV) and two beta-strands (Lys26-Lys28, beta-strand I and Glu67-Asp69, beta-strand II). The beta-strands were found to align in an antiparallel manner to form a very small beta-sheet. This secondary structure is consistent with predictions that S100 beta contains two 'helix-loop-helix' Ca(2+)-binding motifs known as EF-hands. The alignment of the beta-sheet, which brings the two EF-hand domains of S100 beta into close proximity, is similar to that of several other Ca(2+)-ion-binding proteins.


Subject(s)
Calcium-Binding Proteins/chemistry , Magnetic Resonance Spectroscopy , Nerve Growth Factors/chemistry , Protein Structure, Secondary , S100 Proteins , Amino Acid Sequence , Animals , Carbon Isotopes , Consensus Sequence , Hydrogen , Molecular Sequence Data , Nitrogen Isotopes , Rats , Recombinant Proteins/chemistry , S100 Calcium Binding Protein beta Subunit , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...