Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(47): 31528-31538, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34869979

ABSTRACT

This study presents novel chemoresistive reduced graphene oxide-ion-imprinted polymer (IIP-rGO)-based sensors for detection of lead (Pb2+) ions. The ion-imprinted polymer was synthesized by bulk polymerization and modified with a variable amount of rGO incorporated to form an IIP-rGO composite. The amount of rGO in the polymer matrix affected the sensor's relative response, and 1:3 mass ratio produced excellent results, with a consistent trend as the concentration of Pb2+ ions increased in the solution. The decrease in relative resistance (ΔR/R o) followed an exponential decay relationship between the ΔR/R o response and the concentration of Pb2+ ions in aqueous solutions. After solving the exponential decay function, it is observed that the sensor has the upper limit of ΔR/R o >1.7287 µg L-1, and the limit of detection of the sensor is 1.77 µg L-1. A nonimprinted polymer (NIP)-based sensor responded with a low relative resistance of the same magnitude although the concentration was varied. The response ratio of the IIP-based sensor to the NIP-based sensor (ΔR/R o)IIP/(ΔR/R o)NIP as a function of the concentration of Pb2+ ions in the solution shows that the response ratios recorded a maximum of around 22 at 50 µg L-1 and then decreased as the concentration increased, following an exponential decay function with the minimum ratio of 2.09 at 200 µg L-1 but never read 1. The sensor showed excellent selectivity against the bivalent cations Mn2+, Fe2+, Sn2+, and Ti2+. The sensor was capable of exhibiting 90% ΔR/R o response repeatability in a consecutive test.

2.
Article in English | MEDLINE | ID: mdl-34279184

ABSTRACT

The presence of coal-based power plants and coal mine in the Waterberg area subjects the Mokolo River to potentially toxic elements (PTEs) such as mercury (Hg). Mercury is an extremely toxic element. Thus, monitoring and chemical speciation of Hg in water bodies; particularly in sediments is a vital tool for assessing water quality. The objective of this study was to investigate the levels of Hg(II) and methyl Hg (MeHg(I)) in sediment samples collected from Mokolo River in different seasons, as well as examining factors such as pH, temperature and organic matter content, which could affect Hg methylation rates. An ultrasonic based method was used for the extraction of Hg species in sediments. This was followed by the chromatographic separation and detection of Hg(II) and MeHg(I) by the on-line coupling of high-performance liquid chromatography (HPLC) to inductively coupled plasma-mass spectrometry (ICP-MS). A solution containing HCl and 2-mercaptoethanol was employed for the extraction of Hg species in sediments. Separation of the two species of Hg was achieved using isocratic elution mode with a mobile phase containing L-cysteine, 2-mercaptoethanol, ammonium acetate and methanol. The accuracy of the method was checked and yielded a percentage recovery of 86%. The Hg(II) concentrations ranged from 38.4 to 89.05 ng g-1 and 34.8 to 57.3 ng g-1 in low and high flow seasons, respectively. The concentrations of MeHg(I) ranged from 0.702 to 4.5 ng g-1 and 0.5 to 2.5 ng g-1 in the low and high flow seasons, respectively. Factors such as pH and temperature were found to influence the methylation rates, however correlation couldn't be established to organic matter content due to similar amount of organic matter in all the samples.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Biological Availability , Environmental Monitoring , Geologic Sediments , Humans , Mercury/analysis , Rivers , South Africa , Water Pollutants, Chemical/analysis
3.
Biol Trace Elem Res ; 199(3): 1145-1152, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32557112

ABSTRACT

Rooibos tea, scientific name Aspalathus linearis, is a popular tea grown in South Africa and consumed worldwide for its unique taste and presumed health benefits. There is a growing interest in using rooibos tea as a supplement for the deficiency of metallic nutrients in South Africa. In this study, the total concentrations of manganese (Mn) and zinc (Zn) in acid-digested tea leaves and the corresponding tea infusions were determined by inductively coupled plasma-mass spectrometry (ICP-MS) to estimate the contribution of rooibos tea consumption to the recommended daily allowance (RDA) of Mn and Zn in consumers. The accuracy of microwave-assisted acid digestion and tea infusion methods were checked by analyzing INCT-TL-1 tea leaves certified reference material (CRM) and samples spiked with standards, respectively. Both methods yielded quantitative percentage recoveries for Mn and Zn. Rooibos tea leaves and the corresponding infusions are composed of higher levels of Mn than Zn where 40.9 to 85.7 µg Mn/g and 4.15 to 12.2 µg Zn/g were found in digested tea leaves and 11.8 to 30.2 µg Mn/g and 1.51 to 4.59 µg Zn/g in tea infusions. These results indicate the contribution of about 1.0 to 3.2% Mn and 0.03 to 0.08% Zn in males approximately ≥ 9 years of age and 1.3 to 3.8% Mn and 0.04 to 0.11% Zn in females of the same age group as males of the RDA from drinking a cup of tea obtained by infusing a 2-g bag of rooibos tea.


Subject(s)
Aspalathus , Humans , Male , Manganese , Mass Spectrometry , Plant Leaves , South Africa , Tea , Zinc
4.
RSC Adv ; 12(2): 1165-1176, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35425133

ABSTRACT

Phytomining is a newly developing alternative green technology. This technology has been applied for recovering precious metals from mine tailings that are low-grade ores. In this study, effective catalytic transfer hydrogenation of furfural to furfural alcohol was investigated using a ruthenium (Ru) bio-based catalyst, Ru@CassCat. The catalyst was prepared from Ru rich bio-ore recovered during laboratory scale phytomining as a model of mining tailing using the cassava plant (Manihot esculenta). Pre-rooted cassava cuttings were propagated and watered with Ru rich solutions for ten weeks before harvest. Harvested cassava roots were calcined to produce the bio-ore used as an in situ bio-based catalyst. The properties of the catalyst were characterized by various techniques, which include transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM-EDS), powder X-ray diffraction (pXRD), ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) theory. Characterization by FTIR, SEM and TEM revealed that RuCassCat has spherical component particles, loosely arranged around a cellulose/lignin-like matrix of the biocatalyst. It was also found that calcination strengthened the structure and texture of the support carbon matrix to distribute the Ru particles evenly. An ICP-MS analysis showed that up to 295 µg g-1 of Ru was detected in cassava roots. The variation of test conditions, namely, temperature, time, base, catalyst load, and a hydrogen source, was investigated. Optimally, a 0.00295 wt% ruthenium loading on the Ru@CassCat catalyst resulted in 100% furfural conversion with a turnover frequency of 0.0114 million per hour at 160 °C for 24 h using triethylamine as a base and formic acid as a hydrogen source. The catalyst remained active for up to three recycles, consecutively and produced furfural alcohol in high turnover numbers.

5.
Article in English | MEDLINE | ID: mdl-31526109

ABSTRACT

The presence of polycyclic aromatic hydrocarbons (PAHs) in the environment is of major concern since some of these compounds are highly persistent, toxic (causing cancer) and wide spread pollutants. The objective of this study was to evaluate the levels of PAHs in sediment samples collected from Blood and Mokolo Rivers in Limpopo Province, South Africa. The PAHs in sediments were extracted using optimized microwave-assisted extraction (MAE) method. The quantification of sixteen (16) PAHs in sediments was done by gas chromatography-flame ionization detector (GC-FID). The levels of PAHs recorded in sediment samples from Blood River ranged between 0.015 and 3.25 mg kg-1. The concentrations of PAHs obtained in sediments from Mokolo River (0.047 to 52.7 mg kg-1) were higher than those recorded in sediments from Blood River. The PAHs ratios indicated that both pyrogenic and petrogenic could be the sources of these compounds in both rivers. Toxic equivalency factors (TEFs) and benzo(a)pyrene equivalent (BaPE) were used to estimate the potential human health risk of PAHs in quantitative terms. The assessment of ecotoxicological risk indicated that the sediment samples collected from Mokolo River are at high toxicity risk while sediments from Blood River are at low sediment toxicity risk.


Subject(s)
Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Benzo(a)pyrene/analysis , Benzo(a)pyrene/toxicity , Environmental Monitoring , Humans , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity , Risk Assessment , South Africa , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
6.
Article in English | MEDLINE | ID: mdl-31046566

ABSTRACT

The multi-walled carbon nanotubes-branched polyethyleneimine (MWCNTs-BPEI) adsorbent composite material was employed to separate and pre-concentrate As(V) in water samples. The characterization of MWCNTs-BPEI by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy showed successful modification of the composite. The MWCNTs-BPEI composite exhibited selective retention of As(V) in the presence of As(III) in water samples of pH 7 using 40 mg of composite as adsorbent. The pre-concentrated As(V) was quantified using inductively coupled plasma-mass spectrometry (ICP-MS). A limit of detection (LOD) of 0.0537 µg L-1 and limit of quantification (LOQ) of 0.179 µg L-1 were achieved along with pre-concentration factor of 23.3. A percentage recovery of 81.0% confirm the accuracy of the method. The As(V) concentrations in water were in the range of 0.0612-3.65 µg L-1. The As(V) concentrations determined using solid-phase extraction (SPE) procedure were in good agreement with the concentrations obtained using high performance liquid chromatography hyphenated to inductively coupled mass-mass spectrometry (HPLC hyphenated to ICP-MS).


Subject(s)
Arsenicals/isolation & purification , Nanocomposites/chemistry , Solid Phase Extraction/methods , Water Pollutants, Chemical/isolation & purification , Chromatography, High Pressure Liquid , Limit of Detection , Mass Spectrometry , Nanotubes, Carbon/chemistry
7.
Article in English | MEDLINE | ID: mdl-29708823

ABSTRACT

Environmental monitoring of the levels of potentially toxic metals is of importance because of possible adverse effects on living species. This study was conducted to assess the levels of Cd, Cr, Cu, Hg, Mn, Pb, U and V in water, sediment and peat samples collected from the region of Wonderfonteinspruit. Water samples were simply filtered and acidified with HNO3 prior to analysis. Sediment and peat were oven-dried, ground, sieved and mineralised using a microwave digestion system. Concentrations of the selected elements in all samples were determined by inductively coupled plasma-mass spectrometry. A Zeeman mercury analyser was also used for quantification of Hg in the same sediment and peat samples. The method validation was carried out using SRM 1643e water and BCR 320R sediment certified reference materials. The results showed no significant difference at 95% level of confidence between the certified and measured values after using the Student's t-test. The levels of Cd, Cr, Cu, Pb, V and U found in rivers and dams were lower than the tentative South African water quality range guideline for domestic and irrigation purposes. However, water from dams and certain rivers was unsuitable for irrigation and domestic use.


Subject(s)
Geologic Sediments/chemistry , Metals/analysis , Rivers/chemistry , Soil/chemistry , Water Pollutants, Chemical/analysis , Water Quality , Environmental Monitoring/methods , Geologic Sediments/analysis , Humans , Mercury/analysis , Metals/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , South Africa , Water/analysis , Water/chemistry , Water Quality/standards
8.
Article in English | MEDLINE | ID: mdl-25438135

ABSTRACT

Microwave-assisted acid digestion and modified aqua regia (HNO3:HCl:HF:H3BO3) leaching techniques were used for the determination of 15 potentially toxic elements (V, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Sn, Hg and Pb) in sediment samples from Lake Awassa and Lake Ziway, Ethiopia. The digests were subsequently analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). Mercury was directly determined in the solid samples using an elemental mercury analyzer. The precision and accuracy of the digestion procedures were verified using certified reference materials. The experimental results were in good agreement with the certified values (P < 0.05) and the recoveries were quantitative (>90%). The average relative standard deviations were below 10%. There is significant correlation between the two lakes at the 0.01 level (2-tailed). Using the sediment quality guidelines, both lakes are heavily polluted with Zn and some of the sites are heavily polluted with Cu, Ni and Pb. Based on effect range low (ERL) - effect range medium (ERM), in both lakes for Ag were greater than the ERM, indicating that the areas could be toxic to aquatic organisms, while for Cr, Cu, As and Hg the values were less than ERL.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/analysis , Lakes/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Ecology , Environmental Monitoring/instrumentation , Ethiopia , Limit of Detection , Microwaves , Reference Standards , Risk Assessment , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...