Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(2): 937-953, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460507

ABSTRACT

The aim of the study was to investigate the effects of substituting silage of chopped grass with pulp silage of grass fractionated once or twice in a biorefinery using a screw press on fiber kinetics, protein value, and production of CH4 in dairy cows. Six lactating multiparous Holstein cows in mid-lactation (176 ± 93 d in milk), cannulated in the rumen, duodenum, and ileum, were used in an incomplete 6 × 4 Latin square design with a 2 × 3 factorial arrangement of treatments. Perennial ryegrass was harvested in third regrowth from the same field at early and late developmental stage (35 and 44 d of regrowth, respectively) and subjected to 1 of 3 types of processing within each developmental stage. Grass was either harvested for normal silage making (mowed, wilted, chopped, and ensiled), or harvested fresh and fractionated using a screw press. Half of the pulp from the first fractionation was ensiled, whereas the other half of the pulp was rehydrated, fractionated a second time, and pulp hereof was ensiled. The grass and pulp silages were used with concentrates (65:35 forage to concentrate ratio) to make total mixed rations (TMR) based on either silage of chopped grass (GS), pulp silage of grass fractionated once (1×P), or pulp silage of grass fractionated twice (2×P), harvested either at early (E) or late (L) developmental stage resulting in 6 different TMR treatments (EGS, E1×P, E2×P, LGS, L1×P, L2×P). The TMR were fed for ad libitum intake and samples of intestinal digesta and feces were collected for determination of digestibility. The effect of processing on ash-free neutral detergent fiber (aNDFom) concentration in silages depended on developmental stage, but showed that within each developmental stage, pulp silage of grass fractionated twice had higher aNDFom concentration than pulp silage of grass fractionated once and silage of chopped grass. The 2×P resulted in lower (14.9 ± 0.55 vs. 17.5 ± 0.54 kg/d) dry matter intake (DMI) compared with GS. The effects of processing and developmental stage interacted such that apparent total-tract aNDFom digestibility was higher (784 ± 13 vs. 715 ± 13 g/kg) for L2×P compared with LGS, whereas no difference was found between E2×P and EGS. Moreover, the protein value was higher (106 ± 5 vs. 92 ± 5 g AA digested in the small intestine/kg of DMI) for 2×P compared with GS. Unexpectedly, processing had no effect on fractional rate of digestion of digestible aNDFom or CH4 yield (L/kg of DMI), whereas feeding forages harvested at early compared with late developmental stage resulted in lower CH4 yield. Feeding pulp silage of grass fractionated once generally yielded results intermediate to cows fed silage of chopped grass and pulp silage of grass fractionated twice. This study showed that pulp silage of fractionated grass could serve as feed for dairy cows because the fiber digestibility and protein value improved, but further research investigating effects of physical processing of forage on fiber kinetics is required.


Subject(s)
Lolium , Female , Cattle , Animals , Silage/analysis , Lactation , Diet/veterinary , Poaceae/metabolism , Milk/metabolism , Rumen/metabolism , Digestion , Zea mays
2.
Sci Total Environ ; 810: 152376, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34915004

ABSTRACT

Different wetland plants were evaluated regarding their potential to be used in further green biorefining platforms to produce soluble protein and cellulose-textile fibers. The results show a higher protein content in the plants grown in treatment wetland conditions, compared with the same species grown in natural conditions, and diverse effect on the content of cellulose, hemicellulose, and lignin, depending on the plant species, more than the growing environment. The TW biomass did not represent a risk regarding accumulation of heavy metals, named Pb, Cd, and Cr, since the studied plants did not present it in their tissues, neither in the roots nor in the leaves. The results regarding cellulose quality of the TW plants showed positive results, having values of molar mass distributions and degrees of polymerization that suggest a suitability to be considered for cellulose-fiber textiles studies. This is one of the first approaches, in the TW field, to establish a new criterion for selecting plant species to be planted in the system, aiming at recovering resources and use them as inputs for biorefineries and sustainable biobased products.


Subject(s)
Metals, Heavy , Wetlands , Biomass , Cellulose , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...