Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(46): 69861-69874, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35578081

ABSTRACT

A novel visible-light-sensitive ZnVFeO4 photocatalyst has been fabricated by the precipitation method at different pH values for the enhanced photocatalytic degradation of malachite green (MG) dye as a representative pollutant under visible light irradiation at neutral pH conditions. The structure and optical characteristics of the prepared photocatalysts were investigated by XRD, FTIR, N2 adsorption-desorption, TEM, diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) analyses. In addition, the photocatalytic activity of ZnVFeO4 photocatalysts superior the efficiency to be more than that of the mono and bi-metal oxides of iron and iron zinc oxides, respectively. The best sample, ZnVFeO4 at pH 3, significantly enhances the degradation rate under visible light to be 12.7 × 10-3 min-1 and can retain a stable photodegradation efficiency of 90.1% after five cycles. The effect of the catalyst dose and the initial dye concentration on the photodegradation process were studied. This promising behavior under visible light may be attributed to the low bandgap and the decreased electron-hole recombination rate of the ZnVFeO4 heterostructures. The scavenger experiment confirmed that the hydroxyl radicals induced the MG photodegradation process effectively. Hence, the ZnVFeO4 is a reliable visible-light-responsive heterostructure photocatalyst with excellent potential for the photodegradation of organic pollutants in wastewater treatment.


Subject(s)
Environmental Pollutants , Light , Catalysis , Iron , Oxides , Rosaniline Dyes , Zinc
2.
Environ Technol ; 42(6): 842-859, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31327310

ABSTRACT

Metal-organic frameworks (MOFs) have recently debuted as participants and solid supports in catalysts for environmental application in water treatment. Visible light active nanocomposites; ZnO/MIL-101(Fe); were synthesized via a hydrothermal method by loading ZnO; prepared by a green method; on a porous MIL-101(Fe) to be used as a heterogeneous catalyst for Rhodamine B dye (RhB) degradation as a model pollutant. The effect of adding acetic acid during the preparation of MIL-101(Fe) was studied; [A] used for the samples prepared by acetic acid. The prepared catalysts were characterized by XPS, XRD, zeta potential, TGA, FTIR, N2 adsorption-desorption measurements, SEM, EDX, elemental mapping, TEM, and UV-VIS diffuse reflectance spectroscopy. The loading of ZnO on MIL-101(Fe) decreased the band gap from 3.2 eV for ZnO to be 2.85 eV for ZnO/MIL-101(Fe)[A], this low band gap explaining the obtained high activity under visible light irradiation. The mechanism of the photocatalytic degradation of RhB was investigated by introducing different scavengers to compete for the possible reactive species involved in the degradation process. The trapping experiments indicated that h+ and •OH have a vital role in the RhB degradation. The reusability of MIL-101(Fe) was also investigated after three runs. Thus, the synthesized ZnO/MIL-101(Fe)[A] could be used as an alternative catalyst for the photocatalytic degradation of coloured wastewater as it can successfully degrade 97.1% of Rhodamine B (10 mg/L) with high reaction rate (k = 0.0339 min-1) under visible light irradiation for 300 min using 0.5 g/L of the catalyst. The as-prepared ZnO/MIL-101(Fe) and ZnO/MIL-101(Fe)[A] have competitive photocatalytic dye degradation activity.


Subject(s)
Metal-Organic Frameworks , Zinc Oxide , Adsorption , Humans , Light , Rhodamines
SELECTION OF CITATIONS
SEARCH DETAIL
...