Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 11(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34827829

ABSTRACT

This study explores whether crustacean products inhibit viral infections in aquaculture. Chitosan (CHT) was extracted from waste products of Parapenaeus longirostris. Biochemical composition, viscosity measurement, molecular weight, structure and cytotoxicity tests were used to characterize the extracted chitosan. Cultures of E-11 cells derived from snakehead Ophicephalus striatus were inoculated with 106.74 TCID50 of an isolate of betanodavirus genotype RGNNV (redspotted grouper nervous necrosis virus) after being treated with solutions of 0.3% CHT for 1 h at room temperature. The antiviral effect of CHT was assessed by comparing the ability of RGNVV to replicate and produce cytopathic effects on CHT-treated cell cultures. The change in RNA expression levels of the nodavirus capsid protein gene and three mediator genes in infected cells with or without CHT treatment was evaluated by qPCR. Changes in gene expression compared to control groups were monitored at 6, 24, 48 and 71 h post treatment in all target gene transcripts. The CCR3 expression in CHT treated cells showed a significant increase (p < 0.05) until day 3. On the other hand, the expression of TNF-α decreased significantly (p < 0.05) in CHT treated cells throughout the experimental period. Likewise, the expression of the IL-10 gene showed a significant downregulation in CHT treated cells at all time points (p ≤ 0.05). As further evidence of an antiviral effect, CHT treatment of cells produced a reduction in virus load as measured by a reduced expression of the viral capsid gene and the increase in RQ values from 406 ± 1.9 at hour 1 to 695 ± 3.27 at 72 h post inoculation. Statistical analysis showed that the expression of the viral capsid gene was significantly lower in cells treated with chitosan (p ≤ 0.05). These results improve our knowledge about the antiviral activity of this bioactive molecule and highlight its potential use in fish feed industry.

2.
Dis Aquat Organ ; 146: 53-63, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34553693

ABSTRACT

The purpose of this study was to determine the phylogenetic relationships among the primary betanodavirus strains circulating in Tunisian coastal waters. A survey was conducted to investigate nodavirus infections at 15 European sea bass Dicentrarchus labrax and gilthead sea bream Sparus aurata farming sites located along the northern and eastern coasts of Tunisia. The primary objective of the study was to create epidemiological awareness of these infections by determining phylogenetic relationships between the main betanodavirus strains circulating during the period 2012-2019, using RNA1 and/or RNA2 genome segments. Approximately 40% (118 of 294) tissue pools tested were positive for betanodavirus. Positive pools were distributed across all of the sampling sites. While fish mortalities were always correlated with the presence of virus in sea bass, a severe outbreak was also identified in sea bream larvae in 2019. Phylogenetic analysis revealed that almost all Tunisian strains from both sea bass and sea bream irrespective of outbreaks clustered within the RGNNV genotype. It is noteworthy that samples collected during the 2019 outbreak from sea bream contained both RNA1 and RNA2 fragments belonging to the RGNNV and SJNNV genotype, respectively, an indication of viral genome reassortment. To our knowledge, this is the first report of reassortant betanodavirus in Tunisia.


Subject(s)
Bass , Fish Diseases , Nodaviridae , RNA Virus Infections , Sea Bream , Animals , Aquaculture , Fish Diseases/epidemiology , Genotype , Nodaviridae/genetics , Phylogeny , Phylogeography , RNA Virus Infections/epidemiology , RNA Virus Infections/veterinary
3.
Pathogens ; 10(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34451396

ABSTRACT

We describe the design of a simple and highly sensitive electrochemical bioanalytical method enabling the direct detection of a conserved RNA region within the capsid protein gene of a fish nodavirus, making use of nanostructured disposable electrodes. To achieve this goal, we select a conserved region within the nodavirus RNA2 segment to design a DNA probe that is tethered to the surface of nanostructured disposable screen-printed electrodes. In a proof-of-principle test, a synthetic RNA sequence is detected based on competitive hybridization between two oligonucleotides (biotinylated reporter DNA and target RNA) complimentary to a thiolated DNA capture probe. The method is further validated using extracted RNA samples obtained from healthy carrier Sparus aurata and clinically infected Dicentrarchus labrax fish specimens. In parallel, the sensitivity of the newly described biosensor is compared with a new real-time RT-PCR protocol. The current differences measured in the negative control and in presence of each concentration of target RNA are used to determine the dynamic range of the assay. We obtain a linear response (R2 = 0.995) over a range of RNA concentrations from 0.1 to 25 pM with a detection limit of 20 fM. The results are in good agreement with the results found by the RT-qPCR. This method provides a promising approach toward a more effective diagnosis and risk assessment of viral diseases in aquaculture.

SELECTION OF CITATIONS
SEARCH DETAIL
...