Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 11(20): 5866-74, 2005 Oct 07.
Article in English | MEDLINE | ID: mdl-16052656

ABSTRACT

The synthesis of a novel ligand, based on N-methyl-diethylenetriaminetetraacetate and containing a diphenylcyclohexyl serum albumin binding group (L1) is described and the coordination chemistry and biophysical properties of its Gd(III) complex Gd-L1 are reported. The Gd(III) complex of the diethylenetriaminepentaacetate analogue of the ligand described here (L2) is the MRI contrast agent MS-325. The effect of converting an acetate to a methyl group on metal-ligand stability, hydration number, water-exchange rate, relaxivity, and binding to the protein human serum albumin (HSA) is explored. The complex Gd-L1 has two coordinated water molecules in solution, that is, [Gd(L1)(H2O)2]2- as shown by D-band proton ENDOR spectroscopy and implied by 1H and 17O NMR relaxation rate measurements. The Gd-H(water) distance of the coordinated waters was found to be identical to that found for Gd-L2, 3.08 A. Loss of the acetate group destabilizes the Gd(III) complex by 1.7 log units (log K(ML) = 20.34) relative to the complex with L2. The affinity of Gd-L1 for HSA is essentially the same as that of Gd-L2. The water-exchange rate of the two coordinated waters on Gd-L1 (k(ex) = 4.4x10(5) s(-1)) is slowed by an order of magnitude relative to Gd-L2. As a result of this slow water-exchange rate, the observed proton relaxivity of Gd-L1 is much lower in a solution of HSA under physiological conditions (r1(obs) = 22.0 mM(-1) s(-1) for 0.1 mM Gd-L1 in 0.67 mM HSA, HEPES buffer, pH 7.4, 35 degrees C at 20 MHz) than that of Gd-L2 (r1(obs) = 41.5 mM(-1) s(-1)) measured under the same conditions. Despite having two exchangeable water molecules, slow water exchange limits the potential efficacy of Gd-L1 as an MRI contrast agent.


Subject(s)
Gadolinium DTPA/chemistry , Water/chemistry , Contrast Media , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Ultrafiltration
2.
J Am Chem Soc ; 124(12): 3152-62, 2002 Mar 27.
Article in English | MEDLINE | ID: mdl-11902904

ABSTRACT

MS-325 is a novel blood pool contrast agent for magnetic resonance imaging currently undergoing clinical trials to assess blockage in arteries. MS-325 functions by binding to human serum albumin (HSA) in plasma. Binding to HSA serves to prolong plasma half-life, retain the agent in the blood pool, and increase the relaxation rate of water protons in plasma. Ultrafiltration studies with a 5 kDa molecular weight cutoff filter show that MS-325 binds to HSA with stepwise stoichiometric affinity constants (mM(-1)) of K(a1) = 11.0 +/- 2.7, K(a2) = 0.84 +/- 0.16, K(a3) = 0.26 +/- 0.14, and K(a4) = 0.43 +/- 0.24. Under the conditions 0.1 mM MS-325, 4.5% HSA, pH 7.4 (phosphate-buffered saline), and 37 degrees C, 88 +/- 2% of MS-325 is bound to albumin. Fluorescent probe displacement studies show that MS-325 can displace dansyl sarcosine and dansyl-L-asparagine from HSA with inhibition constants (K(i)) of 85 +/- 3 microM and 1500 +/- 850 microM, respectively; however, MS-325 is unable to displace warfarin. These results suggest that MS-325 binds primarily to site II on HSA. The relaxivity of MS-325 when bound to HSA is shown to be site dependent. The Eu(III) analogue of MS-325 is shown to contain one inner-sphere water molecule in the presence and in the absence of HSA. The synthesis of an MS-325 analogue, 5, containing no inner-sphere water molecules is described. Compound 5 is used to estimate the contribution to relaxivity from the outer-sphere water molecules surrounding MS-325. The high relaxivity of MS-325 bound to HSA is primarily because of a 60-100-fold increase in the rotational correlation time of the molecule upon binding (tau(R) = 10.1 +/- 2.6 ns bound vs 115 ps free). Analysis of the nuclear magnetic relaxation dispersion (T(1) and T(2)) profiles also suggests a decrease in the electronic relaxation rate (1/T(1e) at 20 MHz = 2.0 x 10(8) s(-1) bound vs 1.1 x 10(9) s(-1) free) and an increase in the inner-sphere water residency time (tau(m) = 170 +/- 40 ns bound vs 69 +/- 20 ns free).


Subject(s)
Organometallic Compounds/chemistry , Serum Albumin/chemistry , Binding Sites , Binding, Competitive , Contrast Media/chemistry , Contrast Media/metabolism , Gadolinium , Humans , Kinetics , Magnetic Resonance Imaging , Organometallic Compounds/metabolism , Protein Binding , Protons , Serum Albumin/metabolism , Ultrafiltration
SELECTION OF CITATIONS
SEARCH DETAIL
...