Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ophthalmic Physiol Opt ; 32(2): 89-99, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22035177

ABSTRACT

PURPOSE: To examine, in tree shrews, the visual guidance of recovery from negative lens-induced myopia by measuring the effect of wearing low-power negative or positive lenses during recovery. To learn if removing a negative lens for 2 h per day, after compensation has occurred, is sufficient to produce recovery. METHODS: Starting 16 days after natural eye opening (days of visual experience), juvenile tree shrews wore a monocular -5 D lens for 11 days to produce compensation (age-appropriate refraction while wearing the lens). Recovery in four groups was started by discontinuing -5 D lens wear, which caused the treated eyes to be refractively myopic, and substituting: no lens (n = 7), a plano lens (n = 8), a -2 D lens (n = 6) or a +2 D lens (n = 10). In a fifth group (n = 6), the -5 D lens was removed for 2 h each day but worn the remainder of the time. Non-cycloplegic refractive measurements were made daily for the first 10 days and then less frequently. After 31-35 days, the lens-guided recovery period was ended for most animals; periodic measures were continued to assess post-lens recovery changes. RESULTS: All the eyes responded to the -5 D lens and were myopic (-4.8 ± 0.1 D, mean ± S.E.M.) compared to the untreated fellow control eye. In all groups except the -2 D lens group, some animals exhibited slow or incomplete recovery. During recovery, the treated eye of most animals recovered until its refraction, measured with the recovery-lens in place, was near to that of the control eye. Measured without the lens, the -2 D group was myopic and the +2 D group was hyperopic. With the lens in place, the plano-lens, -2 D lens, and +2 D lens groups remained slightly myopic (-1.0 ± 0.3 D, -0.6 ± 0.2 D and -1.3 ± 0.1 D, respectively). The rate of recovery during the first four days was unrelated to the amount of myopia initially experienced by the recovering eyes. Removal of the -5 D lens for 2 h each day produced recovery. CONCLUSIONS: During recovery, the emmetropization mechanism uses the presence of myopia, but perhaps not the magnitude, to guide eyes toward a refractive state similar to the control eye, regardless of whether the optically-recovered eye is longer or shorter than the fellow control eye. Wearing a goggle frame containing a lens of any power limits the recovery. The recovery signal can be intermittent, present for only 2 h per day, and still mediate recovery in competition with increasing amounts of hyperopia as recovery progresses.


Subject(s)
Eyeglasses , Myopia/therapy , Animals , Disease Models, Animal , Emmetropia/physiology , Female , Hyperopia/physiopathology , Male , Myopia/etiology , Myopia/physiopathology , Recovery of Function/physiology , Refraction, Ocular/physiology , Tupaiidae
2.
Vision Res ; 50(6): 564-76, 2010 Mar 17.
Article in English | MEDLINE | ID: mdl-20045711

ABSTRACT

We examined in tree shrews the effect of age on the development of, and recovery from, myopia induced with a negative lens. Starting at 11, 16, 24, 35 or 48days after natural eye-opening (days of visual experience [VE]), juvenile tree shrews (n=5 per group) wore a monocular -5D lens for 11days. A long-term lens-wear group (n=6) began treatment at 16days of VE and wore the lens for 30days. A young adult group (n=5) began to wear a -5D lens between 93 and 107days of VE (mean+/-SD, 100+/-6days of VE) and wore the lens for 29-54days (mean+/-SD, 41.8+/-9.8days). The recovery phase in all groups was started by discontinuing -5D lens wear. Contralateral control eyes in the three youngest groups were compared with a group of age-matched normal eyes and showed a small (<1D), transient myopic shift. The amount of myopia that developed during lens wear was measured as the difference between the treated and control eye refractions. After 11days of lens wear, the induced myopia was similar for the four younger groups (near full compensation: 11days, -5.1+/-0.4D; 16days, -4.7+/-0.3D; 24days, -4.9+/-0.4D; 35days, -4.0+/-0.02) and slightly less in the oldest juvenile group (48days, -3.3+/-0.5D). The young adult animals developed -4.8+/-0.3D of myopia after a longer lens-wear period. The rate of compensation (D/day) was high in the 4 youngest groups and decreased in the 48-day and young adult groups. The refractions of the long-term lens-wear juvenile group remained stable after compensating for the -5D lens. During recovery, all animals in the youngest group recovered fully (<1D residual myopia) within 7days. Examples of both rapid (<10days) and slow recovery (>12days) occurred in all age groups except the youngest. Every animal showed more rapid recovery (higher recovery slope) in the first 4days than afterward. One animal showed extremely slow recovery. Based on the time-course of myopia development observed in the youngest age groups, the start of the susceptible period for negative-lens wear is around 11-15days after eye opening; the rate of compensation remains high until approximately 35days of VE and then gradually declines. Compensation is stable with continued lens wear. The emmetropization mechanism, both for lens compensation and recovery, remains active into young adulthood. The time-course of recovery is more variable than that of compensation and seems to vary with age, with the amount of myopia (weakly) and with the individual animal.


Subject(s)
Aging/physiology , Contact Lenses , Myopia/physiopathology , Refraction, Ocular/physiology , Animals , Disease Models, Animal , Tupaiidae
3.
Invest Ophthalmol Vis Sci ; 47(11): 4687-99, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17065475

ABSTRACT

PURPOSE: To examine the ability of hyperopic defocus, minimal defocus, and myopic defocus to compete against a myopiagenic -5-D lens in juvenile tree shrew eyes. METHODS: Juvenile tree shrews (n > or = 5 per group), on a 14-hour lights-on/10-hour lights-off schedule, wore a monocular -5-D lens (a myopiagenic stimulus) over the right eye in their home cages for more than 23 hours per day for 11 days. For 45 minutes each day, the animals were restrained so that all visual stimuli were >1 m away. While viewing distance was controlled, the -5-D lens was removed and another lens was substituted with one of the following spherical powers: -5 D, -3 D (hyperopic defocus); plano (minimal defocus); or +3, +4, +5, +6, or +10 D (myopic defocus). Daily noncycloplegic autorefractor measures were made on most animals. After 11 days of treatment, cycloplegic refractive state and axial component dimensions were measured. RESULTS: Eyes with the substituted -5- or -3-D-lens developed significant myopia (mean +/- SEM, -4.7 +/- 0.3 and -3.1 +/- 0.1 D, respectively) and appropriate vitreous chamber elongation. All animals with the substituted plano lens (minimal defocus) during the 45-minute period showed no axial elongation or myopia (the plano lens competed effectively against the -5-D lens). Variable results were found among animals that wore a plus lens (myopic defocus). In 11 of 20 eyes, a +3-, +4-, or +5-D lens competed effectively against the -5-D lens (treated eye <1.5 D myopic relative to its fellow control eye). In the other eyes (9/20) myopic defocus was ineffective in blocking compensation; the treated eye became more than 2.5 D myopic relative to the control eye. The +6- and +10-D substituted lenses were ineffective in blocking compensation in all cases. CONCLUSIONS: When viewing distance was limited to objects >1 m away, viewing through a plano lens for 45 minutes (minimal defocus) consistently prevented the development of axial elongation and myopia in response to a myopiagenic -5-D lens. Myopic defocus prevented compensation in some but not all animals. Thus, myopic defocus is encoded by at least some tree shrew retinas as being different from hyperopic defocus, and myopic defocus can sometimes counteract the myopiagenic effect of the -5-D lens (hyperopic defocus). However, it appears that minimal defocus is a more consistent, strong antidote to a myopiagenic stimulus in this mammal closely related to primates.


Subject(s)
Eye/physiopathology , Hyperopia/physiopathology , Myopia/physiopathology , Vision, Binocular/physiology , Animals , Animals, Newborn , Disease Models, Animal , Eye/growth & development , Eyeglasses/adverse effects , Hyperopia/etiology , Myopia/etiology , Refraction, Ocular/physiology , Retinoscopy , Sensory Deprivation , Tupaia
4.
Invest Ophthalmol Vis Sci ; 47(11): 4700-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17065476

ABSTRACT

PURPOSE: To examine the effect of a period of continuous darkness on the refractive state and vitreous chamber depth of normal light-reared juvenile tree shrew eyes, and to learn whether eyes that developed myopia in response to monocular minus-lens wear will recover in darkness. METHODS: Starting at 16 days of visual experience (VE), the refractive state of five dark-treatment tree shrews was measured daily to confirm that it was stable and nearly emmetropic. After corneal and ocular component dimension measures, the animals were placed into continuous darkness for 10 days. On removal of the animals from darkness, corneal and ocular component measures were repeated, and daily refractive measures were resumed. The refractive state of the dark-treatment group was compared with that of a normal-lighting group (n = 5) that received standard colony lighting throughout the measurement period. Five dark-recovery animals wore a monocular -5-D lens for 11 days to induce myopia before they were placed into continuous darkness for 10 days. RESULTS: The animals in the normal-lighting group completed the emmetropization process, stabilizing at approximately (mean +/- SEM) 0.7 +/- 0.3 D of hyperopia (noncycloplegic refraction, corrected for the small eye artifact) at 60 days of VE. Dark-treatment group eyes shifted toward myopia (mean +/- SEM, -4.3 +/- 0.5 D) in the dark. The vitreous chamber became elongated by 0.09 +/- 0.02 mm relative to normal eyes. Corneal power showed a small, near-normal decrease (1.4 +/- 0.3 D). Four of five myopic eyes in the dark-recovery group became more myopic (-2.2 +/- 0.9D) in darkness, and all the fellow control eyes shifted toward myopia (-2.8 +/- 0.5 D). CONCLUSIONS: Maintaining emmetropia is an active process. After eyes have achieved emmetropia or have compensated for a minus lens, continued visual guidance is necessary to maintain a match between the axial length and the focal plane or for recovery to occur. Absence of light is myopiagenic in tree shrews that have developed with normal diurnal lighting. This result contrasts with the apparent absence of a darkness effect in tree shrews reared in the dark from before normal eye opening.


Subject(s)
Dark Adaptation , Myopia/etiology , Animals , Animals, Newborn , Cornea/physiopathology , Myopia/physiopathology , Refraction, Ocular/physiology , Tupaia , Visual Perception , Vitreous Body/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...