Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Clin Neurosci ; 13(6): 789-798, 2022.
Article in English | MEDLINE | ID: mdl-37323952

ABSTRACT

Introduction: The neurotoxic effects of aluminum exposure during the critical period of neurodevelopment have been well documented. This study investigated the known protective effects of calcium supplementation on the cerebellum of juvenile Wistar rats following aluminum-induced neurotoxicity during lactation. Methods: Four groups of juvenile rats were exposed via lactation to distilled water (control group), aluminum (40 mg/kg/d), calcium supplement (50 mg/kg/d), and a combination of both aluminum and calcium from postnatal day 4 to day 28. The cerebella of the animals were excised to access the levels of antioxidant enzymes (superoxide dismutase [SOD], glutathione peroxidase [GPx]), lipid peroxidation (malondialdehyde), histomorphological alterations (hematoxylin and eosin staining), Nissl profile (cresyl fast violet staining), and glial activation (glial fibrillary acidic protein immunohistochemistry). Results: Lactational aluminum significantly decreased the activities of superoxide dismutase and glutathione peroxidase while exacerbating lipid peroxidation and reactive astrocyte in cerebellar lysates. Lactational calcium supplementation normalized the activities of SOD and GPx, thereby preventing excessive lipid peroxidation and glial activation. Despite no apparent changes in the general histology of the cerebellum, aluminum-induced chromatolysis changes in the Purkinje cell layer, which was counteracted by the antioxidant propensities of calcium supplementation. Conclusion: These findings support that calcium supplementation significantly protects the cerebellum against aluminum-induced oxidative stress, chromatolysis, and neuroinflammation.

2.
Environ Anal Health Toxicol ; 35(1): e2020001, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32570996

ABSTRACT

This study was aimed at investigating the neuroprotective effect of Vitexin against lead (Pb) induced neurodegenerative changes in the dorsolateral prefrontal cortex (DLPFC) and working memory in mice. Thirty-two adolescent male albino mice were divided into four groups (n=8). Control group received 0.2 mL of normal saline; Pb group received 100 mg/kg of Pb acetate for 14 days, Vitexin group received 1mg/kg of Vitexin for 14 days, and Pb+Vitexin group received 100 mg/kg of Pb acetate and 1 mgkg of Vitexin for 14 days. Barnes maze test and novel object recognition test were done to ascertain working memory. Histoarchitectural assessment of DLPFC was done with haematoxylin and eosin (H&E), cresyl fast violet and congo red stains. Furthermore, cell count and other morphometric measurements were done. There was significant decline in working memory in the Pb group, but a combination of Pb+Vitexin improved the working memory. Vitexin significantly reduced neuronal death and chromatolysis caused by Pb. Amyloid aggregation was not observed in any of the groups. This study has shown that concurrent administration of Vitexin and Pb will significantly reduce neurodegeneration and improve working memory. However, Pb treatment or Pb+Vitexin treatment does not have any effect on intercellular distance, neuronal length and the cross-sectional area of neurons in layer III of DLPFC.

3.
Environ Anal Health Toxicol ; 35(4): e2020022-0, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33434422

ABSTRACT

This study investigated the neurotoxic effects of permethrin on the cerebellum, hippocampus and prefrontal cortex of Wistar rats and its effects on some behavioral patterns. Fifteen adult male Wistar rats were grouped into three categories: Group A received 0.1 mL normal saline (control), and Groups B and C received mixed feed with 500 mg/kg and 1,000 mg/kg of 0.6% permethrin, respectively, for 14 days. The animals were assessed for memory, anxiety and exploratory locomotion and thereafter anesthetized and transcardially perfused with normal saline and 4% paraformaldehyde (PFA). Cerebellum, hippocampus and prefrontal cortex were excised from the whole brain and processed for tissue histology, histochemistry and immunohistochemistry. Oxidative status and lipid peroxidation were also assessed using catalase, glutathione peroxidase, superoxide dismutase and malondialdehyde as biomarkers. Results revealed dosedependent decrease in body weights but increase in cerebellar and prefrontal weights, depletion of endogenous antioxidant markers, cognitive deficits, reduced locomotor activities, degenerative changes in the microarchitecture at high doses and presence of chromatolytic cells at both low and high doses of permethrin. Astrocytes were activated while synaptophysin expression was downregulated. Permethrin causes dose-dependent neurotoxicity on the morphology, neurochemistry and oxidative status of different brain regions, and these could affect behavioral performance and other neurologic functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...