Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 26(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38785657

ABSTRACT

Lid-driven cavity (LDC) flow is a significant area of study in fluid mechanics due to its common occurrence in engineering challenges. However, using numerical simulations (ANSYS Fluent) to accurately predict fluid flow and mixed convective heat transfer features, incorporating both a moving top wall and a heated hemispherical obstruction at the bottom, has not yet been attempted. This study aims to numerically demonstrate forced convection in a lid-driven square cavity (LDSC) with a moving top wall and a heated hemispherical obstacle at the bottom. The cavity is filled with a Newtonian fluid and subjected to a specific set of velocities (5, 10, 15, and 20 m/s) at the moving wall. The finite volume method is used to solve the governing equations using the Boussinesq approximation and the parallel flow assumption. The impact of various cavity geometries, as well as the influence of the moving top wall on fluid flow and heat transfer within the cavity, are evaluated. The results of this study indicate that the movement of the wall significantly disrupts the flow field inside the cavity, promoting excellent mixing between the flow field below the moving wall and within the cavity. The static pressure exhibits fluctuations, with the highest value observed at the top of the cavity of 1 m width (adjacent to the moving wall) and the lowest at 0.6 m. Furthermore, dynamic pressure experiences a linear increase until reaching its peak at 0.7 m, followed by a steady decrease toward the moving wall. The velocity of the internal surface fluctuates unpredictably along its length while other parameters remain relatively stable.

2.
Materials (Basel) ; 17(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38592004

ABSTRACT

In order to determine the ideal degree of inclination that should be employed for constructing effective thermal energy storage systems, it is important to examine the impact of inclination angle on the melting behavior of phase change materials (PCMs) such as paraffin wax within a square cell. In consequence, this would guarantee the greatest capacity for energy release and storage. Additionally, analyzing this influence aids engineers in creating systems that enhance heat flow from external sources to the PCM and vice versa. To find out how the cell's inclination angle affects the melting of PCM of paraffin wax (RT42) inside a square cell, a numerical analysis is carried out using the ANSYS/FLUENT 16 software. Specifically, the temperature and velocity distributions, together with the evolution of the melting process, will be shown for various inclination angles, and a thorough comparison will be made to assess the influence of inclination angle on the PCM melting process and its completion. The findings demonstrated that when the cell's inclination angle increased from 0° to 15° and from 0° to 30° and 45°, respectively, the amount of time required to finish the melting process increased by 15%, 42%, and 71%, respectively. Additionally, after 210 min of operation, the PCM's maximum temperature is 351.5 K with a 0° angle of inclination (horizontal) against 332.5 K with an angle of inclination of 45°.

3.
Sensors (Basel) ; 24(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38400479

ABSTRACT

Air pollution significantly threatens human health and natural ecosystems and requires urgent attention from decision makers. The fight against air pollution begins with the rigorous monitoring of its levels, followed by intelligent statistical analysis and the application of advanced machine learning algorithms. To effectively reduce air pollution, decision makers must focus on reducing primary sources such as industrial plants and obsolete vehicles, as well as policies that encourage the adoption of clean energy sources. In this study, data analysis was performed for the first time to evaluate air pollution based on the SPSS program. Correlation coefficients between meteorological parameters and particulate matter concentrations (PM1, PM2.5, PM10) were calculated in two urban regions of Romania (Craiova and Drobeta-Turnu Severin) and Turkey (Adana). This study establishes strong relationships between PM concentrations and meteorological parameters with correlation coefficients ranging from -0.617 (between temperature and relative humidity) to 0.998 (between PMs). It shows negative correlations between temperature and particulate matter (-0.241 in Romania and -0.173 in Turkey) and the effects of humidity ranging from moderately positive correlations with PMs (up to 0.360 in Turkey), highlighting the valuable insights offered by independent PM sensor networks in assessing and improving air quality.


Subject(s)
Air Pollution , Ecosystem , Humans , Romania , Turkey , Environmental Monitoring , Air Pollution/analysis , Particulate Matter/analysis
4.
Sci Rep ; 13(1): 17380, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833353

ABSTRACT

In recent years, there has been a growing interest in cold asphalt emulsion mixture (CAEM) due to its numerous advantages, including reduced CO2 emissions, energy savings, and improved safety during construction and application. However, CAEM has often been considered inferior to hot mix asphalt (HMA) in terms of performance. To address this issue and achieve desirable performance characteristics, researchers have been exploring the modification of CAEM using high-cost additives like ordinary Portland cement. In this study, the focus was on investigating the effects of utilizing waste alkaline Ca(OH)2 solution, ground granulated blast-furnace slag (GGBFS), and calcium carbide residue (CCR) as modifiers to enhance the properties of CAEM. The aim was to develop an innovative geopolymer geopolymer-based cold asphalt emulsion mixture (GCAE). The results of the study revealed that the use of waste alkaline Ca(OH)2 solution led to an increase in early hydration, which was confirmed through scanning electron microscopy. Furthermore, the experimental findings demonstrated that waste alkaline Ca(OH)2 solution significantly contributed to the rapid development of early-age strength in GCAE. As a result, GCAE showed great potential for utilization in pavement applications, particularly for roads subjected to harsh service conditions involving moisture and temperature. By exploring these alternative modifiers, the study highlights a promising avenue for enhancing the performance of CAEM and potentially reducing the reliance on expensive additives like ordinary Portland cement. The development of GCAE has the potential to offer improved performance and durability in pavement applications, thus contributing to sustainable and efficient road infrastructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...