Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Semin Cancer Biol ; 72: 36-45, 2021 07.
Article in English | MEDLINE | ID: mdl-32619506

ABSTRACT

Breast cancer is the most common cancer in women with the highest mortality among this gender. Despite treatment strategies including surgery, hormone therapy and targeted therapy have recently advanced, innovative biomarkers are needed for the early detection, treatment and prognosis. An increasing number of non-coding RNAs (ncRNAs) have shown great potential as crucial players in different stages of the breast cancer tumorigenesis, influencing cell death, metabolism, epithelial-mesenchymal transition (EMT), metastasis and drug resistance. Long non-coding RNAs (lncRNAs), specifically, are a class of RNA transcripts with a length greater than 200 nucleotides, which have also been shown to exerts oncogenic or tumour suppressive roles in the pathogenesis of breast cancer. LncRNAs are implicated in different molecular mechanisms by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. Here, we aim to briefly discuss the latest existing body of knowledge regarding the key functions and the molecular mechanisms of some of the most relevant lncRNAs in the pathogenesis, treatment and prognosis of breast cancer.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/therapy , Molecular Targeted Therapy/methods , RNA, Long Noncoding/genetics , Animals , Breast Neoplasms/genetics , Disease Management , Female , Gene Expression Regulation, Neoplastic , Humans
2.
Phys Rev E ; 93(5): 052118, 2016 05.
Article in English | MEDLINE | ID: mdl-27300841

ABSTRACT

We address characterization of many-body superradiant systems and establish a fundamental connection between quantum criticality and the possibility of locally estimating the coupling constant, i.e., extracting its value by probing only a portion of the whole system. In particular, we consider Dicke-like superradiant systems made of an ensemble of two-level atoms interacting with a single-mode radiation field at zero effective temperature, and address estimation of the coupling by measurements performed only on radiation. At first, we obtain analytically the quantum Fisher information (QFI) and show that optimal estimation of the coupling may be achieved by tuning the frequency of the radiation field to drive the system toward criticality. The scaling behavior of the QFI at the critical point is obtained explicitly upon exploiting the symplectic formalism for Gaussian states. We then analyze the performances of feasible detection schemes performed only on the radiation subsystem, namely homodyne detection and photon counting, and show that the corresponding Fisher informations (FIs) approach the global QFI in the critical region. We thus conclude that criticality is a twofold resource. On the one hand, global QFI diverges at the critical point, i.e., the coupling may be estimated with the arbitrary precision. On the other hand, the FIs of feasible local measurements (which are generally smaller than the QFI out of the critical region), show the same scaling of the global QFI; i.e., optimal estimation of coupling may be achieved by locally probing the system, despite its strongly interacting nature.

3.
Cell Death Dis ; 7: e2148, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26986515

ABSTRACT

p53MutaGene is the first online tool for statistical validation of hypotheses regarding the effect of p53 mutational status on gene regulation in cancer. This tool is based on several large-scale clinical gene expression data sets and currently covers breast, colon and lung cancers. The tool detects differential co-expression patterns in expression data between p53 mutated versus p53 normal samples for the user-specified genes. Statistically significant differential co-expression for a gene pair is indicative that regulation of two genes is sensitive to the presence of p53 mutations. p53MutaGene can be used in 'single mode' where the user can test a specific pair of genes or in 'discovery mode' designed for analysis of several genes. Using several examples, we demonstrate that p53MutaGene is a useful tool for fast statistical validation in clinical data of p53-dependent gene regulation patterns. The tool is freely available at http://www.bioprofiling.de/tp53.


Subject(s)
Gene Expression Regulation, Neoplastic , Internet , Mutation , Neoplasms , Software , Tumor Suppressor Protein p53 , Animals , Humans , Neoplasms/genetics , Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Cell Death Differ ; 22(1): 12-21, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25168241

ABSTRACT

MicroRNAs (miRs) are a class of small noncoding RNAs that suppress the expression of protein-coding genes by repressing protein translation. Although the roles that miRs and the miR processing machinery have in regulating epithelial stem cell biology are not fully understood, their fundamental contributions to these processes have been demonstrated over the last few years. The p53-family member p63 is an essential transcription factor for epidermal morphogenesis and homeostasis. p63 functions as a determinant for keratinocyte cell fate and helps to regulate the balance between stemness, differentiation and senescence. An important factor that regulates p63 function is the reciprocal interaction between p63 and miRs. Some miRs control p63 expression, and p63 regulates the miR expression profile in the epidermis. p63 controls miR expression at different levels. It directly regulates the transcription of several miRs and indirectly regulates their processing by regulating the expression of the miR processing components Dicer and DGCR8. In this review, we will discuss the recent findings on the miR-p63 interaction in epidermal biology, particularly focusing on the ΔNp63-dependent regulation of DGCR8 recently described in the ΔNp63(-/-) mouse. We provide a unified view of the current knowledge and discuss the apparent discrepancies and perspective therapeutic opportunities.


Subject(s)
Cell Differentiation/physiology , Keratinocytes/metabolism , MicroRNAs/biosynthesis , Phosphoproteins/metabolism , Stem Cells/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cellular Senescence/physiology , Gene Expression Regulation/physiology , Humans , Keratinocytes/cytology , Mice , Mice, Knockout , MicroRNAs/genetics , Phosphoproteins/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Stem Cells/cytology , Trans-Activators/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
7.
Cell Death Dis ; 5: e1203, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24787015

ABSTRACT

Inhibition of distinct ubiquitin E3 ligases might represent a powerful therapeutic tool. ITCH is a HECT domain-containing E3 ligase that promotes the ubiquitylation and degradation of several proteins, including p73, p63, c-Jun, JunB, Notch and c-FLIP, thus affecting cell fate. Accordingly, ITCH depletion potentiates the effect of chemotherapeutic drugs, revealing ITCH as a potential pharmacological target in cancer therapy. Using high throughput screening of ITCH auto-ubiquitylation, we identified several putative ITCH inhibitors, one of which is clomipramine--a clinically useful antidepressant drug. Previously, we have shown that clomipramine inhibits autophagy by blocking autophagolysosomal fluxes and thus could potentiate chemotherapy in vitro. Here, we found that clomipramine specifically blocks ITCH auto-ubiquitylation, as well as p73 ubiquitylation. By screening structural homologs of clomipramine, we identified several ITCH inhibitors and putative molecular moieties that are essential for ITCH inhibition. Treating a panel of breast, prostate and bladder cancer cell lines with clomipramine, or its homologs, we found that they reduce cancer cell growth, and synergize with gemcitabine or mitomycin in killing cancer cells by blocking autophagy. We also discuss a potential mechanism of inhibition. Together, our study (i) demonstrates the feasibility of using high throughput screening to identify E3 ligase inhibitors and (ii) provides insight into how clomipramine and its structural homologs might interfere with ITCH and other HECT E3 ligase catalytic activity in (iii) potentiating chemotherapy by regulating autophagic fluxes. These results may have direct clinical applications.


Subject(s)
Antidepressive Agents/pharmacology , Autophagy/drug effects , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Ubiquitin-Protein Ligases/antagonists & inhibitors , Binding Sites , Cell Line, Tumor , Clomipramine/analogs & derivatives , Clomipramine/chemistry , Clomipramine/pharmacology , Drug Synergism , Humans , Models, Molecular , Protein Structure, Tertiary , Reproducibility of Results , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
8.
Cell Death Dis ; 5: e1051, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24503543

ABSTRACT

The use of existing drugs for new therapeutic applications, commonly referred to as drug repositioning, is a way for fast and cost-efficient drug discovery. Drug repositioning in oncology is commonly initiated by in vitro experimental evidence that a drug exhibits anticancer cytotoxicity. Any independent verification that the observed effects in vitro may be valid in a clinical setting, and that the drug could potentially affect patient survival in vivo is of paramount importance. Despite considerable recent efforts in computational drug repositioning, none of the studies have considered patient survival information in modelling the potential of existing/new drugs in the management of cancer. Therefore, we have developed DRUGSURV; this is the first computational tool to estimate the potential effects of a drug using patient survival information derived from clinical cancer expression data sets. DRUGSURV provides statistical evidence that a drug can affect survival outcome in particular clinical conditions to justify further investigation of the drug anticancer potential and to guide clinical trial design. DRUGSURV covers both approved drugs (∼1700) as well as experimental drugs (∼5000) and is freely available at http://www.bioprofiling.de/drugsurv.


Subject(s)
Antineoplastic Agents/therapeutic use , Computational Biology/instrumentation , Drug Repositioning , Neoplasms/drug therapy , Neoplasms/mortality , Clinical Trials as Topic , Databases, Factual , Drug Approval , Drug Evaluation , Drug Repositioning/instrumentation , Humans , Internet
9.
Cell Death Dis ; 5: e1018, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24457962

ABSTRACT

Head and neck cancers encompass a heterogeneous group of tumours that, in general, are biologically aggressive in nature. These cancers remain difficult to treat and treatment can cause severe, long-term side effects. For patients who are not cured by surgery and/or (chemo)radiotherapy, there are few effective treatment options. Targeted therapies and predictive biomarkers are urgently needed in order to improve the management and minimise the treatment toxicity, and to allow selection of patients who are likely to benefit from both nonselective and targeted therapies. This clinical update aims to provide an insight into the current understanding of the molecular pathogenesis of the disease, and explores the novel therapies under development and in clinical trials.


Subject(s)
Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/therapy , Molecular Targeted Therapy , Animals , Biomarkers , Head and Neck Neoplasms/metabolism , Humans , Signal Transduction
10.
Oncogene ; 33(42): 5039-46, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-24186203

ABSTRACT

Activation of serine biosynthesis supports growth and proliferation of cancer cells. Human cancers often exhibit overexpression of phosphoglycerate dehydrogenase (PHGDH), the metabolic enzyme that catalyses the reaction that diverts serine biosynthesis from the glycolytic pathway. By refueling serine biosynthetic pathways, cancer cells sustain their metabolic requirements, promoting macromolecule synthesis, anaplerotic flux and ATP. Serine biosynthesis intersects glutaminolysis and together with this pathway provides substrates for production of antioxidant GSH. In human lung adenocarcinomas we identified a correlation between serine biosynthetic pathway and p73 expression. Metabolic profiling of human cancer cell line revealed that TAp73 activates serine biosynthesis, resulting in increased intracellular levels of serine and glycine, associated to accumulation of glutamate, tricarboxylic acid (TCA) anaplerotic intermediates and GSH. However, at molecular level p73 does not directly regulate serine metabolic enzymes, but transcriptionally controls a key enzyme of glutaminolysis, glutaminase-2 (GLS-2). p73, through GLS-2, favors conversion of glutamine in glutamate, which in turn drives the serine biosynthetic pathway. Serine and glutamate can be then employed for GSH synthesis, thus the p73-dependent metabolic switch enables potential response against oxidative stress. In knockdown experiment, indeed, TAp73 depletion completely abrogates cancer cell proliferation capacity in serine/glycine-deprivation, supporting the role of p73 to help cancer cells under metabolic stress. These findings implicate p73 in regulation of cancer metabolism and suggest that TAp73 influences glutamine and serine metabolism, affecting GSH synthesis and determining cancer pathogenesis.


Subject(s)
DNA-Binding Proteins/physiology , Lung Neoplasms/metabolism , Nuclear Proteins/physiology , Serine/biosynthesis , Tumor Suppressor Proteins/physiology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Humans , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Isoforms/physiology , Transaminases/genetics , Transaminases/metabolism , Transcription, Genetic , Tumor Protein p73
11.
Cell Death Dis ; 4: e922, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24232098

ABSTRACT

During embryonic development, hair follicles (HFs) develop from an epidermal-mesenchymal cross talk between the ectoderm progenitor layer and the underlying dermis. Epidermal stem cell activation represents a crucial point both for HF morphogenesis and for hair regeneration. miR-24 is an anti-proliferative microRNA (miRNA), which is induced during differentiation of several cellular systems including the epidermis. Here, we show that miR-24 is expressed in the HF and has a role in hair morphogenesis. We generated transgenic mice ectopically expressing miR-24 under the K5 promoter. The K5::miR-24 animals display a marked defect in HF morphogenesis, with thinning of hair coat and altered HF structure. Expression of miR-24 alters the normal process of hair keratinocyte differentiation, leading to altered expression of differentiation markers. MiR-24 directly represses the hair keratinocyte stemness regulator Tcf-3. These results support the notion that microRNAs, and among them miR-24, have an important role in postnatal epidermal homeostasis.


Subject(s)
Hair Follicle/cytology , MicroRNAs/genetics , Transcription Factor 7-Like 1 Protein/metabolism , Animals , Blotting, Western , Cell Proliferation , Cells, Cultured , Fluorescent Antibody Technique , In Situ Hybridization , Mice , Mice, Transgenic , Morphogenesis/genetics , Morphogenesis/physiology , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factor 7-Like 1 Protein/genetics
12.
Cell Death Dis ; 4: e645, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23703390

ABSTRACT

p63 is a p53 family transcription factor, which besides unique roles in epithelial development, shares tumor suppressive activity with its homolog p53. The p63 gene has different transcriptional start sites, which generate two N-terminal isoforms (transactivation domain (TA)p63 and amino terminal truncated protein(ΔN)p63); in addition alternative splicing at the 5'-end give rise to at least five C-terminal isoforms. This complexity of gene structure has probably fostered the debate and controversy on p63 function in cancer, with TP63-harboring two distinctive promoters, codifying for the TAp63 and ΔNp63 isoforms, and having discrete functions. However, ΔNp63 also drives expression of target genes that have a relevant role in cancer and metastasis. In this study, we identified a novel p63 transcriptional target, caspase-1. Caspase-1 is proinflammatory caspase, which functions in tumor suppression. We show that both p63 isoforms promote caspase-1 expression by physical binding to its promoter. Consistent with our in vitro findings, we also identified a direct correlation between p63 and caspase-1 expression in human cancer data sets. In addition, survival estimation analysis demonstrated that functional interaction between p63 and caspase-1 represents a predictor of positive survival outcome in human cancers. Overall, our data report a novel p63 target gene involved in tumor suppression, and the clinical analysis underlines the biological relevance of this finding and suggests a further clinically predictive biomarker.


Subject(s)
Caspase 1/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Caspase 1/genetics , Cell Line , HEK293 Cells , Humans , Promoter Regions, Genetic , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcriptional Activation , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...