Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432052

ABSTRACT

Metal-oxide semiconducting materials are promising for building high-performance field-effect transistor (FET) based biochemical sensors. The existence of well-established top-down scalable manufacturing processes enables the reliable production of cost-effective yet high-performance sensors, two key considerations toward the translation of such devices in real-life applications. Metal-oxide semiconductor FET biochemical sensors are especially well-suited to the development of Point-of-Care testing (PoCT) devices, as illustrated by the rapidly growing body of reports in the field. Yet, metal-oxide semiconductor FET sensors remain confined to date, mainly in academia. Toward accelerating the real-life translation of this exciting technology, we review the current literature and discuss the critical features underpinning the successful development of metal-oxide semiconductor FET-based PoCT devices that meet the stringent performance, manufacturing, and regulatory requirements of PoCT.


Subject(s)
Biosensing Techniques , Transistors, Electronic , Point-of-Care Systems , Oxides , Semiconductors
2.
RSC Adv ; 12(24): 15486-15492, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35685185

ABSTRACT

It is agreed that low mass transfer and poor reaction kinetics are the main reasons behind the low power density of microbial fuel cells (MFCs). Microscale MFCs can introduce a marvelous solution for the mass transfer dilemma. However, the volumetric power density and coulombic efficiency of present microscale MFCs are still limited due to the poor reaction kinetics. The size, shape, chemical properties and material of the electrodes are essential parameters controlling the reaction kinetics. In this study, a 3D carbon nanofiber disk is introduced as an effective anode for a single-chamber air-cathode micro-sized MFC as it improved the reaction kinetics. The proposed electrode was fabricated by a judicious combination of the electrospinning technique and thermal treatment. Owing to the intercalation of the microorganisms in the carbon nanofiber skeleton, compared to many previous reports, high power and current densities of 8.1 Wm-2 and 44.9 Am-2, respectively, were obtained from the 19.6 µL single-chamber air-cathode MFC. However, the thickness of the carbon nanofiber layer has to be optimized by adjusting the electrospinning time. The power density observed from a 10 min electrospinning time-based anode outperformed the 5- and 20 min ones by 1.5 and 2 times, respectively.

3.
Polymers (Basel) ; 14(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458291

ABSTRACT

Co-doped carbon nanofiber mats can be prepared by the addition of cobalt acetate to the polyacrylonitrile/DMF electrospun solution. Wastewater obtained from food industries was utilized as the anolyte as well as microorganisms as the source in single-chamber batch mode microbial fuel cells. The results indicated that the single Co-free carbon nanofiber mat was not a good anode in the used microbial fuel cells. However, the generated power can be distinctly enhanced by using double active layers of pristine carbon nanofiber mats or a single layer Co-doped carbon nanofiber mat as anodes. Typically, after 24 h batching time, the estimated generated power densities were 10, 92, and 121 mW/m2 for single, double active layers, and Co-doped carbon nanofiber anodes, respectively. For comparison, the performance of the cell was investigated using carbon cloth and carbon paper as anodes, the observed power densities were smaller than the introduced modified anodes at 58 and 62 mW/m2, respectively. Moreover, the COD removal and Columbic efficiency were calculated for the proposed anodes as well as the used commercial ones. The results further confirm the priority of using double active layer or metal-doped carbon nanofiber anodes over the commercial ones. Numerically, the calculated COD removals were 29.16 and 38.95% for carbon paper and carbon cloth while 40.53 and 45.79% COD removals were obtained with double active layer and Co-doped carbon nanofiber anodes, respectively. With a similar trend, the calculated Columbic efficiencies were 26, 42, 52, and 71% for the same sequence.

4.
R Soc Open Sci ; 8(11): 210996, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34849243

ABSTRACT

The possibility of using rainwater as a sustainable anolyte in an air-cathode microbial fuel cell (MFC) is investigated in this study. The results indicate that the proposed MFC can work within a wide temperature range (from 0 to 30°C) and under aerobic or anaerobic conditions. However, the rainwater season has a distinct impact. Under anaerobic conditions, the summer rainwater achieves a promised open circuit potential (OCP) of 553 ± 2 mV without addition of nutrients at the ambient temperature, while addition of nutrients leads to an increase in the cell voltage to 763 ± 3 and 588 ± 2 mV at 30°C and ambient temperature, respectively. The maximum OCP for the winter rainwater (492 ± 1.5 mV) is obtained when the reactor is exposed to the air (aerobic conditions) at ambient temperature. Furthermore, the winter rainwater MFC generates a maximum power output of 7 ± 0.1 mWm-2 at a corresponding current density value of 44 ± 0.7 mAm-2 at 30°C. While, at the ambient temperature, the maximum output power is obtained with the summer rainwater (7.2 ± 0.1 mWm-2 at 26 ± 0.5 mAm-2). Moreover, investigation of the bacterial diversity indicates that Lactobacillus spp. is the dominant electroactive genus in the summer rainwater, while in the winter rainwater, Staphylococcus spp. is the main electroactive bacteria. The cyclic voltammetry analysis confirms that the electrons are delivered directly from the bacterial biofilm to the anode surface and without mediators. Overall, this study opens a new avenue for using a novel sustainable type of MFC derived from rainwater.

5.
Nanoscale ; 13(28): 12279-12287, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34251003

ABSTRACT

Rapid diagnosis of preeclampsia is necessary to ensure timely administration of appropriate care and prevent the potentially catastrophic complications of the condition affecting both mothers and babies. While the diagnostic superiority of angiogenic blood biomarkers such as placental growth factor has recently been demonstrated, there is an urgent need to develop point-of-care (PoC) technologies that allow rapid, quantitative, and accurate testing for these markers within local communities. Towards addressing this need, here we report on a fully integrated biodiagnostic platform based on nanoscale indium oxide field effect transistor (FET) sensors. The high-performance FET sensors are integrated with blood sample processing cartridges that minimize the need for operator intervention during the assay and eliminate the need for analytical equipment. Within 40 minutes and from 30 µL of blood, the FET platform could reliably measure PlGF with a limit of detection of 0.06 pg mL-1 and a five order of magnitudes dynamic range. Pilot clinical validation in four preeclamptic pregnancies confirmed that the accuracy and reliability of the FET platform, paving the way for further development to a much-needed point-of-care preeclampsia testing.


Subject(s)
Pre-Eclampsia , Biomarkers , Female , Humans , Placenta Growth Factor , Point-of-Care Testing , Pre-Eclampsia/diagnosis , Pregnancy , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...