Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 22(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38535447

ABSTRACT

The production of fucoxanthin and fatty acids in Conticribra weissflogii has been examined, but there is still a lack of understanding regarding the impact of trace elements, including iron, on their co-production. To address this knowledge gap, this study investigated the effects of FeCl3·6H2O on the growth, fucoxanthin, and fatty acids of C. weissflogii. The findings revealed that the highest cell density (1.9 × 106 cells mL-1), cell dry weight (0.89 ± 0.15 g L-1), and total fatty acid concentration (83,318.13 µg g-1) were achieved at an iron concentration of 15.75 mg L-1, while the maximum carotenoid and fucoxanthin contents were obtained at an iron concentration of 3.15 mg L-1. The study demonstrated that the content of the active substance in C. weissflogii could be increased by adjusting the iron concentration, providing new information as to the more efficient co-production of fucoxanthin and fatty acids and offering experimental support for large-scale production.


Subject(s)
Diatoms , Trace Elements , Iron , Xanthophylls , Fatty Acids
2.
Mar Drugs ; 21(9)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37755108

ABSTRACT

Fucoxanthin is a natural active substance derived from diatoms that is beneficial to the growth and immunity of humans and aquatic animals. Temperature, light and salinity are important environmental factors affecting the accumulation of diatom actives; however, their effects on the production of fucoxanthin in C. weissflogii are unclear. In this study, single-factor experiments are designed and followed by an orthogonal experiment to determine the optimal combination of fucoxanthin production conditions in C. weissflogii. The results showed that the optimum conditions for fucoxanthin production were a temperature of 30 °C, a light intensity of 30 umol m-2 s-1 and a salinity of 25. Under these conditions, the cell density, biomass, carotenoid content and fucoxanthin content of C. weissflogii reached 1.97 × 106 cell mL-1, 0.76 g L-1, 2.209 mg L-1 and 1.372 mg g-1, respectively, which were increased to 1.53, 1.71, 2.50 and 1.48 times higher than their initial content. The work sought to give useful information that will lead to an improved understanding of the effective method of cultivation of C. weissflogii for natural fucoxanthin production.


Subject(s)
Diatoms , Animals , Humans , Temperature , Sodium Chloride , Xanthophylls
3.
Mar Drugs ; 21(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36827147

ABSTRACT

Fucoxanthin and fatty acids are active substances that are beneficial to the growth and immunity of humans and aquatic animals. However, relatively few species have been exploited for fucoxanthin and fatty acids in the industry. At the same time, due to its low extract content, poor stability, high production cost, and serious seasonal and regional limitations, the industry cannot normally meet the greater demand of the international market. Therefore, this experiment seeks to improve the fucoxanthin and fatty acid content of C. weissflogii by adjusting the nitrogen concentration in the culture medium. It was found that when the nitrogen concentration was 150 mg L-1, the cell number was 1.5 × 106 cell mL-1, and the average biomass was 0.75 g L-1. The mean value of carotenoid concentration was 2.179 mg L-1. The average concentration of fucoxanthin was 1.547 mg g-1. When the nitrogen concentration was 75 mg L-1, the fatty acid content reached its highest. By adjusting the concentration of nitrogen, the contents of fucoxanthin and fatty acids were increased. The results provided a theoretical basis for commercial extraction of fucoxanthin and fatty acids and further promoted the industrialization of fucoxanthin and fatty acids.


Subject(s)
Diatoms , Fatty Acids , Animals , Humans , Fatty Acids/pharmacology , Xanthophylls/pharmacology , Carotenoids/pharmacology , Nitrogen/pharmacology
4.
Article in English | MEDLINE | ID: mdl-31151156

ABSTRACT

Concerns about environmental safety have led to strict regulations on the discharge of final brewery effluents into water bodies. Brewery wastewater contains huge amounts of organic compounds that can cause environmental pollution. The microalgae wastewater treatment method is an emerging environmentally friendly biotechnological process. Microalgae grow well in nutrient-rich wastewater by absorbing organic nutrients and converting them into useful biomass. The harvested biomass can be used as animal feed, as an alternative energy source for biodiesel production and as biofertilizer. This review discusses conventional and current brewery wastewater treatment methods, and the application and potential of microalgae in brewery wastewater treatment. This study also discusses the benefits as well as challenges associated with microalgae brewery and other industrial wastewater treatments.


Subject(s)
Beer , Microalgae , Waste Disposal, Fluid/methods , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...