Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 272(28): 17734-43, 1997 Jul 11.
Article in English | MEDLINE | ID: mdl-9211925

ABSTRACT

Although endothelin-1 can elicit prolonged physiologic responses, accumulating evidence suggests that rapid desensitization affects the primary G protein-coupled receptors mediating these responses, the endothelin A and B receptors (ETA-R and ETB-R). The mechanisms by which this desensitization proceeds remain obscure, however. Because some intracellular domain sequences of the ETA-R and ETB-R differ substantially, we tested the possibility that these receptor subtypes might be differentially regulated by G protein-coupled receptor kinases (GRKs). Homologous, or receptor-specific, desensitization occurred within 4 min both in the ETA-R-expressing A10 cells and in 293 cells transfected with either the human ETA-R or ETB-R. In 293 cells, this desensitization corresponded temporally with agonist-induced phosphorylation of each receptor, assessed by receptor immunoprecipitation from 32Pi-labeled cells. Agonist-induced receptor phosphorylation was not substantially affected by PKC inhibition but was reduced 40% (p << 0.03) by GRK inhibition, effected by a dominant negative GRK2 mutant. Inhibition of agonist-induced phosphorylation abrogated agonist-induced ETA-R desensitization. Overexpression of GRK2, -5, or -6 in 293 cells augmented agonist-induced ET-R phosphorylation approximately 2-fold (p << 0.02), but each kinase reduced receptor-promoted phosphoinositide hydrolysis differently. While GRK5 inhibited ET-R signaling by only approximately 25%, GRK2 inhibited ET-R signaling by 80% (p << 0.01). Congruent with its superior efficacy in suppressing ET-R signaling, GRK2, but not GRK5, co-immunoprecipitated with the ET-Rs in an agonist-dependent manner. We conclude that both the ETA-R and ETB-R can be regulated indistinguishably by GRK-initiated desensitization. We propose that because of its affinity for ET-Rs demonstrated by co-immunoprecipitation, GRK2 is the most likely of the GRKs to initiate ET-R desensitization.


Subject(s)
GTP-Binding Proteins/metabolism , Protein Serine-Threonine Kinases , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Endothelin/metabolism , Animals , Cattle , Cell Line , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Endothelin-1/metabolism , G-Protein-Coupled Receptor Kinase 5 , G-Protein-Coupled Receptor Kinases , Humans , Models, Chemical , Molecular Weight , Phosphatidylinositols/metabolism , Phosphorylation , Rats , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Endothelin A , Receptor, Endothelin B , Substrate Specificity , beta-Adrenergic Receptor Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...