Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; 25(11): 1217-23, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22407896

ABSTRACT

In conventional metabolism and pharmacokinetic studies, radioactive isotopes are used to identify and quantify the breakdown products of xenobiotics. However, the stable isotope (13) C provides a cheaper and less hazardous alternative. Metabolites of (13) C-enriched xenobiotics can be detected, quantified and identified by (13) C-filtered NMR spectroscopy. However, one obstacle to using (13) C is its 1.1% natural abundance that produces a background signal in (13) C-filtered NMR spectra of crude biological extracts. The signal makes it difficult to distinguish between (13) C-enriched xenobiotics resonances from endogenous metabolites unrelated to the xenobiotic. This study proposes that the (13) C background signal can be distinguished from resonances of (13) C-enriched xenobiotics by the absence of a (12) C component in the xenobiotic. This is detected by combined analysis of (13) C-filtered and -edited NMR spectra. The theory underlying the approach is described and the method is demonstrated by the detection of sub-microgram amounts of (13) C-enriched phenacetin in crude extracts of hepatocyte microsomes.


Subject(s)
Complex Mixtures/chemistry , Magnetic Resonance Spectroscopy/methods , Microsomes, Liver/metabolism , Animals , Carbon Isotopes , Male , Microsomes, Liver/drug effects , Phenacetin/chemistry , Phenacetin/pharmacology , Protons , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...