Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145792

ABSTRACT

Soil is a real treasure that humans cannot live without. Therefore, it is very important to sustain and conserve soils to guarantee food, fiber, fuel, and other human necessities. Healthy or high-quality soils that include adequate fertility, diverse ecosystems, and good physical properties are important to allow soil to produce healthy food in support of human health. When a soil suffers from degradation, the soil's productivity decreases. Soil restoration refers to the reversal of degradational processes. This study is a pictorial review on the nano-restoration of soil to return its fertility. Restoring soil fertility for zero hunger and restoration of degraded soils are also discussed. Sustainable production of nanoparticles using plants and microbes is part of the process of soil nano-restoration. The nexus of nanoparticle-plant-microbe (NPM) is a crucial issue for soil fertility. This nexus itself has several internal interactions or relationships, which control the bioavailability of nutrients, agrochemicals, or pollutants for cultivated plants. The NPM nexus is also controlled by many factors that are related to soil fertility and its restoration. This is the first photographic review on nano-restoration to return and sustain soil fertility. However, several additional open questions need to be answered and will be discussed in this work.

2.
Environ Monit Assess ; 193(9): 592, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34424421

ABSTRACT

The health sector is critical to the well-being of any country, but developing countries have several obstacles that prevent them from providing adequate health care. This became an even larger concern after the COVID-19 outbreak left millions of people dead worldwide and generated huge amounts of infected or potentially infected wastes. The management and disposal of medical wastes during and post-COVID-19 represent a major challenge in all countries, but this challenge is particularly great for developing countries that do not have robust waste disposal infrastructure. The main problems in developing countries include inefficient treatment procedures, limited capacity of healthcare facilities, and improper waste disposal procedures. The management of medical wastes in most developing countries was primitive prior to the pandemic. The improper treatment and disposal of these wastes in our current situation may further speed COVID-19 spread, creating a serious risk for workers in the medical and sanitation fields, patients, and all of society. Therefore, there is a critical need to discuss emerging challenges in handling, treating, and disposing of medical wastes in developing countries during and after the COVID-19 outbreak. There is a need to determine best disposal techniques given the conditions and limitations under which developing countries operate. Several open questions need to be investigated concerning this global issue, such as to what extent developing countries can control the expected environmental impacts of COVID-19, particularly those related to medical wastes? What are the projected management scenarios for medical wastes under the COVID-19 outbreak? And what are the major environmental risks posed by contaminated wastes related to COVID-19 treatment? Studies directed at the questions above, careful planning, the use of large capacity mobile recycling facilities, and following established guidelines for disposal of medical wastes should reduce risk of COVID-19 spread in developing countries.


Subject(s)
COVID-19 , Medical Waste Disposal , Pandemics , Developing Countries , Environmental Monitoring , Humans
3.
Ecotoxicol Environ Saf ; 222: 112500, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34274837

ABSTRACT

Human health and its improvement are the main target of several studies related to medical, agricultural and industrial sciences. The human health is the primary conclusion of many studies. The improving of human health may include supplying the people with enough and safe nutrients against malnutrition to fight against multiple diseases like COVID-19. Biofortification is a process by which the edible plants can be enriched with essential nutrients for human health against malnutrition. After the great success of biofortification approach in the human struggle against malnutrition, a new biotechnological tool in enriching the crops with essential nutrients in the form of nanoparticles to supplement human diet with balanced diet is called nano-biofortification. Nano biofortification can be achieved by applying the nano particles of essential nutrients (e.g., Cu, Fe, Se and Zn) foliar or their nano-fertilizers in soils or waters. Not all essential nutrients for human nutrition can be biofortified in the nano-form using all edible plants but there are several obstacles prevent this approach. These stumbling blocks are increased due to COVID-19 and its problems including the global trade, global breakdown between countries, and global crisis of food production. The main target of this review was to evaluate the nano-biofortification process and its using against malnutrition as a new approach in the era of COVID-19. This review also opens many questions, which are needed to be answered like is nano-biofortification a promising solution against malnutrition? Is COVID-19 will increase the global crisis of malnutrition? What is the best method of applied nano-nutrients to achieve nano-biofortification? What are the challenges of nano-biofortification during and post of the COVID-19?


Subject(s)
COVID-19 , Malnutrition , Biofortification , Crops, Agricultural , Humans , SARS-CoV-2
4.
Environ Pollut ; 238: 972-976, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29454497

ABSTRACT

This study aimed to elucidate the origin of the widespread nicotine contamination of plant-derived commodities, by conducting field experiments with various herbs and spice plants. By scattering tobacco and cigarette butts on the field and subsequent nicotine analyses of the acceptor plants, we verified that the alkaloid is leached out into the soil and is taken up by the crop plants. This path of contamination pertains even when there is only one cigarette butt per square meter. Even such minor pollution results - at least in the case of basil and peppermint - in considerable high nicotine contaminations, which exceed the maximum residue level by more than 20-fold. The data reported here clearly outline the large practical relevance of this soil-borne contamination path and imply that unthoughtful disposal of cigarette butts in the field by farm workers may be the reason for the widespread occurrence of nicotine contamination in plant-derived commodities. Therefore, such misbehavior needs to be prevented using education and sensitization, and by including this issue into the guidelines of good agricultural practice.


Subject(s)
Nicotine/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Tobacco Products , Environmental Pollution , Humans , Nicotiana/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...