Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5686, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454008

ABSTRACT

This article is an attempt at examining the axi-symmetric and asymmetric streaming flows described by the CSF framework. A liquid that has microfibers implanted in it, like a fiber-reinforced composite substance, is so-called CSF. It is a system that consists of an endless vertical cylindrical interface that separates the two CSF structure. The CSFs are increasingly growing significant in modern manufacturing and technology, necessitating greater research into these fluids. An axial EF acts over the cylindrical contact in addition to the influence of CSF. The VPT is employed for the sake of convenience to minimize mathematical complexity. Combining the elementary linear equations of motion and the proper linear related BCs is the major procedure of the linear technique. A collection of physically dimensionless numbers is produced using a non-dimensional process. Subsequently, the requirements for hypothetical linear stability are developed. With the aid of the Gaster's theorem, the MS is applied in computing the dispersion relationships. After carefully examining a variety of effects on the stability investigation of the system at issue, it has been shown that the system is more unstable when a porous material is present than it would be without one. The resulting axisymmetric disturbance situation is more unstable. The linear techniques are depicted throughout a number of graphs.

2.
Sci Rep ; 13(1): 16118, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752174

ABSTRACT

This work examines the impact of an unchanged longitudinal electric field and the ambient gas on the EHD instability of an Oldroyd-B fluid in a vertical cylinder, where the system is immersed in permeable media. In order to explore the possible subject uses in thermo-fluid systems, numerous experimental and theoretical types of research on the subject are conducted. The main factors influencing the dispersion and stability configurations are represented by the energy and concentration equations. The linear Boussinesq approximating framework is recommended for further convenience. A huge growth in numerous physical and technical implications is what motivated this study. Using the standard normal modes of examination, the characteristics of velocity fields, temperature, and concentration are analyzed. The conventional stability results in a non-dimensional convoluted transcendental dispersion connection between the non-dimensional growth rate and all other physical parameters. The Maranogoni phenomenon, in which temperature and concentration distributions affect surface tension, has been addressed. It is observed that the intense electric field, the Prandtl numeral, the Lewis numeral, and the Lewis numeral velocity ratio have a stabilizing influence. As opposed to the Weber numeral, the Ohnesorge numeral, and the density ratio have a destabilizing influence.

SELECTION OF CITATIONS
SEARCH DETAIL
...