Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(22): e2300142, 2023 09.
Article in English | MEDLINE | ID: mdl-37165724

ABSTRACT

Electroencephalography has garnered interest for applications in mobile healthcare, human-machine interfaces, and Internet of Things. Conventional electroencephalography relies on wet and dry electrodes. Despite favorable interface impedance of wet electrodes and skin, the application of a large amount of gel at their interface with skin limits the electroencephalography spatial resolution, increases the risk of shorting between electrodes, and makes them unsuited for long-term mobile recording. In contrast, dry electrodes are better suited for long-term recordings but susceptible to motion artifacts. In addition, both wet and dry electrodes are non-adhesive to the hairy scalp and mechanical support, or chemical adhesives are used to hold them in place. Herein, a conical microstructure array (CMSA) based sensor made of carbon nanotube-polydimethylsiloxane composite is reported. The CMSA sensor is fabricated using the innovative, cost-effective, and scalable method of viscosity-controlled dip-pull process. The sensor adheres to the hairy scalp by generating negative pressure in its conical microstructures when it is pressed against scalp. Aided by the application of a trace amount of gel, CMSA sensor establishes good electrical contact with the skin, enabling its applications in mobile electroencephalography over extended periods. Notably, the signal quality of CMSA sensors is comparable to that of medical-grade wet gel electrodes.


Subject(s)
Scalp , Wearable Electronic Devices , Humans , Adhesives , Skin , Electroencephalography , Electrodes
2.
Nat Protoc ; 16(5): 2395-2417, 2021 05.
Article in English | MEDLINE | ID: mdl-33846631

ABSTRACT

Numerous fields of science and technology, including healthcare, robotics and bioelectronics, have begun to switch their research direction from developing 'high-end, high-cost' tools towards 'high-end, low-cost' solutions. Graphene electronic tattoos (GETs), whose fabrication protocol is discussed in this work, are ideal building blocks of future wearable technology due to their outstanding electromechanical properties. The GETs are composed of high-quality, large-scale graphene that is transferred onto tattoo paper, resulting in an electronic device that is applied onto skin like a temporary tattoo. Here, we provide a comprehensive GET fabrication protocol, starting from graphene growth and ending with integration onto human skin. The methodology presented is unique since it utilizes high-quality electronic-grade graphene, while the processing is done by using low-cost and off-the-shelf methods, such as a mechanical cutter plotter. The GETs can be either used in combination with advanced scientific equipment to perform precision experiments, or with low-cost electrophysiology boards, to conduct similar operations from home. In this protocol, we showcase how GETs can be applied onto the human body and how they can be used to obtain a variety of biopotentials, including electroencephalogram (brain waves), electrocardiogram (heart activity), electromyogram (muscle activity), as well as monitoring of body temperature and hydration. With graphene available from commercial sources, the whole protocol consumes ~3 h of labor and does not require highly trained personnel. The protocol described in this work can be readily replicated in simple laboratories, including high school facilities.


Subject(s)
Electrical Equipment and Supplies , Graphite/chemistry , Tattooing/instrumentation , Equipment Design , Mechanical Phenomena
3.
Anal Chim Acta ; 934: 212-7, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27506362

ABSTRACT

In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation.


Subject(s)
Biosensing Techniques , Graphite/chemistry , Hafnium/chemistry , Oxides/chemistry , Transistors, Electronic , Animals , Electrolytes , Hydrogen-Ion Concentration , Male , Osmolar Concentration , Rats , Rats, Sprague-Dawley
4.
Adv Healthc Mater ; 5(6): 711-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26799457

ABSTRACT

Epidermal pH is an indication of the skin's physiological condition. For example, pH of wound can be correlated to angiogenesis, protease activity, bacterial infection, etc. Chronic nonhealing wounds are known to have an elevated alkaline environment, while healing process occurs more readily in an acidic environment. Thus, dermal patches capable of continuous pH measurement can be used as point-of-care systems for monitoring skin disorder and the wound healing process. Here, pH-responsive hydrogel fibers are presented that can be used for long-term monitoring of epidermal wound condition. pH-responsive dyes are loaded into mesoporous microparticles and incorporated into hydrogel fibers using a microfluidic spinning system. The fabricated pH-responsive microfibers are flexible and can create conformal contact with skin. The response of pH-sensitive fibers with different compositions and thicknesses are characterized. The suggested technique is scalable and can be used to fabricate hydrogel-based wound dressings with clinically relevant dimensions. Images of the pH-sensing fibers during real-time pH measurement can be captured with a smart phone camera for convenient readout on-site. Through image processing, a quantitative pH map of the hydrogel fibers and the underlying tissue can be extracted. The developed skin dressing can act as a point-of-care device for monitoring the wound healing process.


Subject(s)
Hydrogels/chemistry , Alginates/chemistry , Animals , Calcium Chloride/chemistry , Cell Line , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogels/pharmacology , Hydrogels/therapeutic use , Hydrogen-Ion Concentration , Microfluidic Analytical Techniques , Polyesters/chemistry , Porosity , Skin Diseases/drug therapy , Swine , Transdermal Patch , Wound Healing/drug effects
5.
Biosens Bioelectron ; 54: 462-7, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24315878

ABSTRACT

We present a portable lab-on-chip device for high-throughput trapping and lysis of single cells with in-situ impedance monitoring in an all-electronic approach. The lab-on-chip device consists of microwell arrays between transparent conducting electrodes within a microfluidic channel to deliver and extract cells using alternating current (AC) dielectrophoresis. Cells are lysed with high efficiency using direct current (DC) electric fields between the electrodes. Results are presented for trapping and lysis of human red blood cells. Impedance spectroscopy is used to estimate the percentage of filled wells with cells and to monitor lysis. The results show impedance between electrodes decreases with increase in the percentage of filled wells with cells and drops to a minimum after lysis. Impedance monitoring provides a reasonably accurate measurement of cell trapping and lysis. Utilizing an all-electronic approach eliminates the need for bulky optical components and cameras for monitoring.


Subject(s)
Biosensing Techniques/instrumentation , Erythrocytes/cytology , Microfluidic Analytical Techniques/instrumentation , Dielectric Spectroscopy , Electric Impedance , Electrophoresis/instrumentation , Equipment Design , Erythrocytes/pathology , Female , Hemolysis , High-Throughput Screening Assays/instrumentation , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...