Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 14(49): 54623-54634, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36446022

ABSTRACT

Additive and antisolvent engineering strategies are outstandingly efficient in enhancing perovskite quality, photovoltaic performance, and stability of perovskite solar cells (PSCs). In this work, an effective approach is applied by coupling the antisolvent mixture and multi-functional additive procedures, which is recognized as antisolvent additive engineering (AAE). The graphene quantum dots functionalized with amide (AGQDs), which consists of carbonyl, amine, and long hydrophobic alkyl chain functional groups, are added to the antisolvent mixture of toluene (T) and hexane (H) as an efficient additive to form the CH3NH3PbI3 (MAPI):AGQDs graded heterojunction structure. A broad range of analytical techniques, including scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, space charge limited current, UV-visible spectroscopy, external quantum efficiency, and time-of-flight secondary ion mass spectrometry, are used to investigate the effect of AAE treatment with AGQDs on the quality of perovskite film and performance of the PSCs. Importantly, not only a uniform and dense perovskite film with hydrophobic property is obtained but also defects on the perovskite surface are significantly passivated by the interaction between AGQDs and uncoordinated Pb2+. As a result, an enhanced power conversion efficiency (PCE) of 19.10% is achieved for the champion PSCs treated with AGQD additive, compared to the PCE of 16.00% for untreated reference PSCs. In addition, the high-efficiency PSCs based on AGQDs show high stability and maintain 89% of their initial PCE after 960 h in ambient conditions.

2.
ACS Appl Mater Interfaces ; 14(2): 2958-2967, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34989234

ABSTRACT

Crystal orientations are closely related to the behavior of photogenerated charge carriers and are vital for controlling the optoelectronic properties of perovskite solar cells. Herein, we propose a facile approach to reveal the effect of lattice plane orientation distribution on the charge carrier kinetics via constructing CsBr-doped mixed cation perovskite phases. With grazing-incidence wide-angle X-ray scattering measurements, we investigate the crystallographic properties of mixed perovskite films at the microscopic scale and reveal the effect of the extrinsic CsBr doping on the stacking behavior of the lattice planes. Combined with transient photocurrent, transient photovoltage, and space-charge-limited current measurements, the transport dynamics and recombination of the photogenerated charge carriers are characterized. It is demonstrated that CsBr compositional engineering can significantly affect the perovskite crystal structure in terms of the orientation distribution of crystal planes and passivation of trap-state densities, as well as simultaneously facilitate the photogenerated charge carrier transport across the absorber and its interfaces. This strategy provides unique insight into the underlying relationship between the stacking pattern of crystal planes, photogenerated charge carrier transport, and optoelectronic properties of solar cells.

3.
ACS Appl Mater Interfaces ; 13(28): 32894-32905, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34240843

ABSTRACT

Passivation is one of the most promising concepts to heal defects created at the surface and grain boundaries of polycrystalline perovskite thin films, which significantly deteriorate the photovoltaic performance and stability of corresponding devices. Here, 1,10-phenanthroline, known as a bidentate chelating ligand, is implemented between the methylammonium lead iodide (MAPbI3) film and the hole-transport layer for both passivating the lead-based surface defects (undercoordinated lead ions) and converting the excess/unreacted lead iodide (PbI2) buried at interfaces, which is problematic for the long-term stability, into "neutralized" and beneficial species (PbI2(1,10-phen)x, x = 1, 2) for efficient hole transfer at the modified interface. The defect healing ability of 1,10-phenanthroline is verified with a set of complementary techniques including photoluminescence (steady-state and time-resolved), space-charge-limited current (SCLC) measurements, light intensity dependent JV measurements, and Fourier-transform photocurrent spectroscopy (FTPS). In addition to these analytical methods, we employ advanced X-ray scattering techniques, nano-Fourier transform infrared (nano-FTIR) spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to further analyze the structure and chemical composition at the perovskite surface after treatment at nanoscale spatial resolution. On the basis of our experimental results, we conclude that 1,10-phenanthroline treatment induces the formation of different morphologies with distinct chemical compositions on the surface of the perovskite film such that surface defects are effectively passivated, and excess/unreacted PbI2 is converted into beneficial complex species at the modified interface. As a result, an improved power conversion efficiency (20.16%) and significantly more stable unencapsulated perovskite solar cells are obtained with the 1,10-phenanthroline treatment compared to the MAPbI3 reference device (18.03%).

4.
ACS Appl Mater Interfaces ; 13(16): 19072-19084, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33861568

ABSTRACT

Organic solar cells (OSCs) recently achieved efficiencies of over 18% and are well on their way to practical applications, but still considerable stability issues need to be overcome. One major problem emerges from the electron transport material zinc oxide (ZnO), which is mainly used in the inverted device architecture and decomposes many high-performance nonfullerene acceptors due to its photocatalytic activity. In this work, we add three different fullerene derivatives-PC71BM, ICMA, and BisPCBM-to an inverted binary PBDB-TF:IT-4F system in order to suppress the photocatalytic degradation of IT-4F on ZnO via the radical scavenging abilities of the fullerenes. We demonstrate that the addition of 5% fullerene not only increases the performance of the binary PBDB-TF:IT-4F system but also significantly improves the device lifetime under UV illumination in an inert atmosphere. While the binary devices lose 20% of their initial efficiency after only 3 h, this time is increased fivefold for the most promising ternary devices with ICMA. We attribute this improvement to a reduced photocatalytic decomposition of IT-4F in the ternary system, which results in a decreased recombination. We propose that the added fullerenes protect the IT-4F by acting as a sacrificial reagent, thereby suppressing the trap state formation. Furthermore, we show that the protective effect of the most promising fullerene ICMA is transferable to two other binary systems PBDB-TF:BTP-4F and PTB7-Th:IT-4F. Importantly, this effect can also increase the air stability of PBDB-TF:IT-4F. This work demonstrates that the addition of fullerene derivatives is a transferable and straightforward strategy to improve the stability of OSCs.

5.
ACS Appl Mater Interfaces ; 12(47): 52643-52651, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33190484

ABSTRACT

Perovskite solar cells (PSCs) have been developed as a promising photovoltaic technology because of their excellent photovoltaic performance. However, interfacial recombination and charge carrier transport losses at the surface greatly limit the performance and stability of PSCs. In this work, the fabrication of high-quality PSCs based on methylammonium lead iodide with excellent ambient stability is reported. An anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), is introduced to simultaneously passivate the defect states and stabilize the cubic phase of the perovskite film. The SDBS located at grain boundaries and the surface of the active layer can effectively passivate under-coordinated lead ions and protect the perovskite components from water-induced degradation. As a result, a champion power conversion efficiency (PCE) of 19.42% is achieved with an open-circuit voltage (VOC) of 1.12 V, a short-circuit current (JSC) of 23.23 mA cm-2, and a fill factor (FF) of 74% in combination with superior moisture stability. The SDBS-passivated devices retain 80% of their initial average PCE after 2112 h of storage under ambient conditions.

6.
J Mol Model ; 25(8): 224, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31309358

ABSTRACT

Demands in the field of molecular design for optimized bandgap and proper energy levels to obtain high efficiencies are growing progressively in organic electronics. In the present work, we designed a series of molecules based on diketopyrrolopyrrole (DPP) and benzothiadiazoles (BT). We also studied the efeect of the presence and position of the nitrogen atom as an effective heteroatom. Finally, we optimized the energy levels of the designed structures to find the most favorable donor properties along with fullerene and non-fullerene (NF) acceptors in bulk heterojunction (BHJ) solar cell systems. To shed new light on the electronic characteristics of the designed structures, we developed a correction gamut of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels. The gamut is a span that predicts the occurrence of practical HOMO or LUMO with high probability from density functional theory computations in the gas phase. The model was validated using experimental energy level values of a similar structure as reference material. The results obtained by the new pathway of combining the idea of energy level gamuts with the modified Scharber model for NF BHJ suggested that the designed structures can afford power conversion efficiencies (PCE) for NF-BHJ of 8.5-10.5%. Graphical abstract Improved approach for predicting power conversion efficiencies (PCE) of designed molecules.

7.
Phys Chem Chem Phys ; 20(36): 23674-23683, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30191206

ABSTRACT

Here, brand new ternary hybrid solar cells comprising perovskite nanocrystals (NCs) with a complementary absorption profile of the organic host matrix are reported. In particular, NH2CH[double bond, length as m-dash]NH2PbI3 (FAPbI3) perovskite NCs are implemented in bulk heterojunction organic solar cells based on the pDPP5T-2 electron donating polymer and a [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) acceptor at various loading amounts and the fabricated hybrid photovoltaics are thoroughly studied by employing different optoelectrical characterization methods. Current-voltage measurements and photoinduced charge carrier extraction by linear increasing voltage (photo-CELIV) reveal improved charge generation and charge transport properties upon incorporation of perovskite NCs into the photo-active layer of the hybrid solar cell. The power conversion efficiency (PCE) of the hybrid solar cell comprising 5% perovskite NCs is 10% enhanced compared to the organic reference, mainly due to the enlarged light harvesting and increased short circuit current density (Jsc). However, results suggest that introducing a higher amount of perovskite content induces bimolecular and trap-assisted recombination in the ternary devices. We perform a comprehensive transient absorption study of the charge transfer/transport mechanisms by employing femto-second pump-probe transient absorption spectroscopy (fs-TAS). fs-TAS measurements demonstrate a slower charge carrier recombination rate due to the introduction of perovskite NCs into the photoactive layer. Results reveal that DPP injects electrons from the singlet excited state into the perovskite NCs, which causes the desired cascading charge carrier transfer. In ternary blends, a small amount of FAPbI3 NCs provides an additional pathway in favor of the charge-separated state via the NCs, which, despite accelerating the depopulation of DPP's singlet excited state slightly slows down the charge-separation process between DPP and PC61BM. Interestingly, the loss processes are slowed down; an effect that is more important and, hence, explains the improved solar cell efficiency.

8.
ACS Appl Mater Interfaces ; 10(34): 28803-28811, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30074766

ABSTRACT

In this work, we present a novel small molecule based on dithienylthienothiadiazole units (named SM1) acting as an efficient component in ternary blend organic solar cells to modify the hole extraction at the interface. Our findings show that the SM1 suppresses the surface recombination and enhances the open-circuit voltage ( Voc). By introducing SM1 in a host system composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl- C61-butyric acid methyl ester (PCBM), we obtained Voc values of up to 0.75 V and fill factors larger than 70% for the ternary blends. As a consequence, the power conversion efficiency is improved by about 30% compared to P3HT:PCBM binary devices. Interestingly, external quantum efficiency and absorption spectra in the near-infrared region do not show any contribution of SM1 in dried films. Instead, the addition of the small molecule improves the Voc by reducing the surface recombination losses. To shed light on the recombination processes, we carried out Fourier-transform photocurrent spectroscopy and impedance spectroscopy measurements. This work shows that the ternary concept can also have functionalities other than photosensitization and can even act as a morphology-directing agent or an interface modifier.

9.
Chemistry ; 23(70): 17829-17835, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29031007

ABSTRACT

We have designed a series of molecules and developed synthetic methodology that allows for the inclusion of structural diversity along both the lateral and vertical axes of the basic TCNQ skeleton. In the lateral direction, benzoannulation extends the π-system through (hetero)acene formation, whereas incorporation of a [3]cumulene increases delocalization vertically. The potential of these new molecules as semiconductors is explored through UV/Vis spectroscopy, cyclic voltammetry, X-ray crystallography, thin-film formation, and mobility measurements (using space charge limited current measurements).

10.
Macromol Rapid Commun ; 38(7)2017 Apr.
Article in English | MEDLINE | ID: mdl-28195679

ABSTRACT

Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A1 -D-A2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A1 -D-A2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm-2 , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes.


Subject(s)
Electric Power Supplies , Polymers/chemistry , Solar Energy , Molecular Structure , Polymers/chemical synthesis
11.
Macromol Rapid Commun ; 38(2)2017 Jan.
Article in English | MEDLINE | ID: mdl-27918651

ABSTRACT

Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm-2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved.


Subject(s)
Electrochemical Techniques , Electrons , Polymers/chemical synthesis , Semiconductors , Molecular Structure , Photochemical Processes , Polymers/chemistry , Quantum Theory
12.
Sci Rep ; 6: 30915, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27498880

ABSTRACT

High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100's of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.

13.
J Phys Chem B ; 120(19): 4431-8, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27070101

ABSTRACT

The solubility of organic semiconductors in environmentally benign solvents is an important prerequisite for the widespread adoption of organic electronic appliances. Solubility can be determined by considering the cohesive forces in a liquid via Hansen solubility parameters (HSP). We report a numerical approach to determine the HSP of fullerenes using a mathematical tool based on artificial neural networks (ANN). ANN transforms the molecular surface charge density distribution (σ-profile) as determined by density functional theory (DFT) calculations within the framework of a continuum solvation model into solubility parameters. We validate our model with experimentally determined HSP of the fullerenes C60, PC61BM, bisPC61BM, ICMA, ICBA, and PC71BM and through comparison with previously reported molecular dynamics calculations. Most excitingly, the ANN is able to correctly predict the dispersive contributions to the solubility parameters of the fullerenes although no explicit information on the van der Waals forces is present in the σ-profile. The presented theoretical DFT calculation in combination with the ANN mathematical tool can be easily extended to other π-conjugated, electronic material classes and offers a fast and reliable toolbox for future pathways that may include the design of green ink formulations for solution-processed optoelectronic devices.

14.
Macromol Rapid Commun ; 36(20): 1778-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26390143

ABSTRACT

The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer.


Subject(s)
Solar Energy , Catalysis , Electric Power Supplies , Electrochemistry , Molecular Structure , Molecular Weight , Photochemical Processes , Polymerization , Polymers/chemistry
15.
Chemphyschem ; 16(6): 1275-80, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25603784

ABSTRACT

The use of additives to improve the performance of organic photovoltaic cells has been intensely researched in recent years. However, so far, no system has been reported for the classification of additives and their functions. In this report, a system for classifying additives according to the fundamental mechanism by which they influence microstructure formation for P3HT:PCBM is suggested. The major parameters used for their classification are solubility and drying kinetics. Both are discussed in detail and their consequences on processing are analyzed. Furthermore, a general mechanism to classify the impact of additives on structure formation is suggested and discussed for different materials relevant to organic photovoltaic devices.

16.
ACS Nano ; 8(12): 12632-40, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25405589

ABSTRACT

Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.

17.
J Am Chem Soc ; 136(31): 10949-55, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25003533

ABSTRACT

The enormous synthetic efforts on novel solar cell materials require a reliable and fast technique for the rapid screening of novel donor/acceptor combinations in order to quickly and reliably estimate their optimized parameters. Here, we report the applicability of such a versatile and fast evaluation technique for bulk heterojunction (BHJ) organic photovoltaics (OPV) by utilizing a steady-state photoluminescence (PL) method confirmed by electroluminescence (EL) measurements. A strong relation has been observed between the residual singlet emission and the charge transfer state emission in the blend. Using this relation, a figure of merit (FOM) is defined from photoluminescence and also electroluminescence measurements for qualitative analysis and shown to precisely anticipate the optimized blend parameters of bulk heterojunction films. Photoluminescence allows contactless evaluation of the photoactive layer and can be used to predict the optimized conditions for the best polymer-fullerene combination. Most interestingly, the contactless, PL-based FOM method has the potential to be integrated as a fast and reliable inline tool for quality control and material optimization.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 128: 197-206, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24667425

ABSTRACT

A perylene diimide type small molecule (BI-PDI) has been synthesized through Suzuki coupling reaction between N,N'-bis(2,6-diisopropylphenyl)-1,7-dibromoperylene-3,4,9,10-tetracarboxylic diimide and 2-(2-hydroxyphenyl)-7-phenyl-1H-benzimidazole-4-boronic acid. BI-PDI small molecule has showed an absorption band between 350 and 750 nm on thin films. HOMO and LUMO energy levels of BI-PDI dye have been calculated to be about -5.92 eV and -3.82 eV, respectively. Solution-processed bulk heterojunction (BHJ) solar cells have been constructed using BI-PDI as donor and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor or poly(3-hexylthiophene) (P3HT) as donor and BI-PDI as acceptor. The external quantum efficiencies (EQE) of the devices cover the most of the visible region between 400 and 700 nm for both configurations. Photovoltaic performances of BI-PDI-based organic solar cells are limited by the aggregation tendency of PDI structure and poor hole/electron mobilities of the active layer.


Subject(s)
Benzimidazoles/chemistry , Imides/chemistry , Light , Perylene/analogs & derivatives , Solar Energy , Perylene/chemistry
19.
Macromol Rapid Commun ; 34(13): 1090-7, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23821335

ABSTRACT

Recently, the concept of near-infrared sensitization is successfully employed to increase the light harvesting in large-bandgap polymer-based solar cells. To gain deeper insights into the operation mechanism of ternary organic solar cells, a comprehensive understanding of charge transfer-charge transport in ternary blends is a necessity. Herein, P3HT:PCPDTBT:PCBM ternary blend films are investigated by transient absorption spectroscopy. Hole transfer from PCPDTBT-positive polarons to P3HT in the P3HT:PCPDTBT:PCBM 0.9:0.1:1 blend film can be visualized. This process evolves within 140 ps and is discussed with respect to the proposed charge-generation mechanisms.


Subject(s)
Fullerenes/chemistry , Polymers/chemistry , Thiophenes/chemistry , Electrochemical Techniques , Polymerization , Solar Energy , Spectrum Analysis
20.
ACS Appl Mater Interfaces ; 5(12): 5609-16, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23725075

ABSTRACT

Ternary composite inverted organic solar cells based on poly(3-hexylthiophen-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) blended with two different near-infrared absorbing benzannulated aza-BODIPY dyes, difluoro-bora-bis-(1-phenyl-indoyl)-azamethine (1) or difluoro-bora-bis-(1-(5-methylthiophen)-indoyl)-azamethine (2), were constructed and characterized. The amount of these two aza-BODIPY dyes, within the P3HT and PCBM matrix, was systematically varied, and the characteristics of the respective devices were recorded. Although the addition of both aza-BODIPY dyes enhanced the absorption of the blends, only the addition of 1 improved the overall power conversion efficiency (PCE) in the near-infrared (IR) region. The present work paves the way for the integration of near-infrared absorbing aza-BODIPY derivatives as sensitizers in ternary composite solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...