Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cancer ; 124(10): 2174-2183, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29533458

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) alterations are associated with multiple cancers. Current EGFR-directed therapies have led to increased efficacy but are associated with specific side effects. The antibody-drug conjugate depatuxizumab mafodotin (depatux-m) targets EGFR with a monoclonal antibody linked to a cytotoxin, and is highly tumor-specific. METHODS: This phase 1/2 study evaluated the safety, pharmacokinetics, and efficacy of depatux-m in patients who had advanced solid tumors with known wild-type EGFR overexpression, amplification, or mutated EGFR variant III. A 3 + 3 dose escalation was used, and 2 dosing schedules were evaluated. Depatux-m also was manufactured under an alternate process to reduce the drug load and improve the safety profile, and it was tested at the maximum tolerated dose (MTD). In another cohort, prolonged infusion time of depatux-m was evaluated; and a cohort with confirmed EGFR amplification also was evaluated at the MTD. RESULTS: Fifty-six patients were treated. The MTD and the recommended phase 2 dose for depatux-m was 3.0 mg/kg. Common adverse events (AEs) were blurred vision (48%) and fatigue (41%). A majority of patients (66%) experienced 1 or more ocular AEs. Grade 3 or 4 AEs were observed in 43% of patients. One patient with EGFR-amplified, triple-negative breast cancer had a partial response. Stable disease was observed in 23% of patients. Pharmacokinetics revealed that depatux-m exposures were approximately dose-proportional. CONCLUSIONS: Depatux-m resulted in infrequent nonocular AEs but increased ocular AEs. Patient follow-up confirmed that ocular AEs were reversible. Lowering the drug-antibody ratio did not decrease the number of ocular AEs. A partial response in 1 patient with EGFR-amplified disease provides the opportunity to study depatux-m in diseases with a high incidence of EGFR amplification. Cancer 2018;124:2174-83. © 2018 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Fatigue/epidemiology , Immunoconjugates/administration & dosage , Neoplasms/drug therapy , Vision Disorders/epidemiology , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Dose-Response Relationship, Drug , Drug Administration Schedule , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Fatigue/chemically induced , Female , Follow-Up Studies , Gene Amplification , Humans , Immunoconjugates/adverse effects , Immunoconjugates/pharmacokinetics , Infusions, Intravenous , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Staging , Neoplasms/genetics , Neoplasms/pathology , Treatment Outcome , Vision Disorders/chemically induced
2.
J Am Chem Soc ; 137(40): 12815-34, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26352328

ABSTRACT

First principle calculations of extended X-ray absorption fine structure (EXAFS) data have seen widespread use in bioinorganic chemistry, perhaps most notably for modeling the Mn4Ca site in the oxygen evolving complex (OEC) of photosystem II (PSII). The logic implied by the calculations rests on the assumption that it is possible to a priori predict an accurate EXAFS spectrum provided that the underlying geometric structure is correct. The present study investigates the extent to which this is possible using state of the art EXAFS theory. The FEFF program is used to evaluate the ability of a multiple scattering-based approach to directly calculate the EXAFS spectrum of crystallographically defined model complexes. The results of these parameter free predictions are compared with the more traditional approach of fitting FEFF calculated spectra to experimental data. A series of seven crystallographically characterized Mn monomers and dimers is used as a test set. The largest deviations between the FEFF calculated EXAFS spectra and the experimental EXAFS spectra arise from the amplitudes. The amplitude errors result from a combination of errors in calculated S0(2) and Debye-Waller values as well as uncertainties in background subtraction. Additional errors may be attributed to structural parameters, particularly in cases where reliable high-resolution crystal structures are not available. Based on these investigations, the strengths and weaknesses of using first-principle EXAFS calculations as a predictive tool are discussed. We demonstrate that a range of DFT optimized structures of the OEC may all be considered consistent with experimental EXAFS data and that caution must be exercised when using EXAFS data to obtain topological arrangements of complex clusters.


Subject(s)
Models, Chemical , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Spectrum Analysis/methods
3.
J Phys Chem B ; 119(43): 13904-21, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26225537

ABSTRACT

Multifrequency pulsed EPR data are reported for a series of oxygen bridged (µ-oxo/µ-hydroxo) bimetallic manganese complexes where the oxygen is labeled with the magnetically active isotope (17)O (I = 5/2). Two synthetic complexes and two biological metallocofactors are examined: a planar bis-µ-oxo bridged complex and a bent, bis-µ-oxo-µ-carboxylato bridge complex; the dimanganese catalase, which catalyzes the dismutation of H2O2 to H2O and O2, and the recently identified manganese/iron cofactor of the R2lox protein, a homologue of the small subunit of the ribonuclotide reductase enzyme (class 1c). High field (W-band) hyperfine EPR spectroscopies are demonstrated to be ideal methods to characterize the (17)O magnetic interactions, allowing a magnetic fingerprint for the bridging oxygen ligand to be developed. It is shown that the µ-oxo bridge motif displays a small positive isotropic hyperfine coupling constant of about +5 to +7 MHz and an anisotropic/dipolar coupling of -9 MHz. In addition, protonation of the bridge is correlated with an increase of the hyperfine coupling constant. Broken symmetry density functional theory is evaluated as a predictive tool for estimating hyperfine coupling of bridging species. Experimental and theoretical results provide a framework for the characterization of the oxygen bridge in Mn metallocofactor systems, including the water oxidizing cofactor of photosystem II, allowing the substrate/solvent interface to be examined throughout its catalytic cycle.


Subject(s)
Manganese/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Quantum Theory , Electron Spin Resonance Spectroscopy , Models, Molecular
4.
Invest New Drugs ; 33(3): 671-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25895099

ABSTRACT

PURPOSE: ABT-806, a humanized recombinant monoclonal antibody, binds a unique epidermal growth factor receptor (EGFR) epitope exposed in the EGFRde2-7 (EGFRvIII) deletion mutant and other EGFR proteins in the activated state. This phase I study evaluated the safety, pharmacokinetics, and recommended phase two dose (RP2D) of ABT-806 in patients with solid tumors that commonly overexpress activated EGFR or EGFRvlll. METHODS: Patients with advanced solid tumors, including glioblastoma, were eligible. Following a dose escalation phase, expanded safety cohorts of patients with solid tumors or EGFR-amplified glioblastoma were enrolled. Adverse events (AEs) were graded by National Cancer Institute Common Terminology Criteria for Adverse Events v4.0; tumor response was assessed by Response Evaluation Criteria in Solid Tumors v1.1. EGFR protein expression was quantified by immunohistochemistry. RESULTS: 49 patients were treated. Frequent AEs (≥10 %) possibly/probably related to ABT-806 were fatigue (18 %), nausea (16 %), dermatitis acneiform (12 %), and vomiting (10 %). Only one dose-limiting toxicity (grade three morbilliform rash) occurred. The RP2D was the pre-specified highest dose (24 mg/kg). Systemic exposures were dose proportional between 2 and 24 mg/kg. Median time to progression was 55 days (95 % confidence interval, 53-57) in all patients and 43 days (22-57) for glioblastoma patients. No objective responses occurred; however, two patients had prolonged stable disease. An EGFR-amplified penile cancer patient has stable disease lasting over 2.5 years. CONCLUSIONS: ABT-806 has unique pharmacokinetic and safety profiles. Toxicities were infrequent and typically low grade at the RP2D. Linear ABT-806 pharmacokinetics suggest lack of significant binding to wild-type EGFR in normal tissues.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers, Tumor/metabolism , Cohort Studies , Dose-Response Relationship, Drug , ErbB Receptors/metabolism , Female , Humans , Male , Middle Aged , Neoplasm Staging
5.
Proc Natl Acad Sci U S A ; 110(39): 15561-6, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24023065

ABSTRACT

The assignment of the two substrate water sites of the tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster of photosystem II is essential for the elucidation of the mechanism of biological O-O bond formation and the subsequent design of bio-inspired water-splitting catalysts. We recently demonstrated using pulsed EPR spectroscopy that one of the five oxygen bridges (µ-oxo) exchanges unusually rapidly with bulk water and is thus a likely candidate for one of the substrates. Ammonia, a water analog, was previously shown to bind to the Mn4O5Ca cluster, potentially displacing a water/substrate ligand [Britt RD, et al. (1989) J Am Chem Soc 111(10):3522-3532]. Here we show by a combination of EPR and time-resolved membrane inlet mass spectrometry that the binding of ammonia perturbs the exchangeable µ-oxo bridge without drastically altering the binding/exchange kinetics of the two substrates. In combination with broken-symmetry density functional theory, our results show that (i) the exchangable µ-oxo bridge is O5 {using the labeling of the current crystal structure [Umena Y, et al. (2011) Nature 473(7345):55-60]}; (ii) ammonia displaces a water ligand to the outer manganese (MnA4-W1); and (iii) as W1 is trans to O5, ammonia binding elongates the MnA4-O5 bond, leading to the perturbation of the µ-oxo bridge resonance and to a small change in the water exchange rates. These experimental results support O-O bond formation between O5 and possibly an oxyl radical as proposed by Siegbahn and exclude W1 as the second substrate water.


Subject(s)
Ammonia/metabolism , Manganese/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Solvents/metabolism , Electrons , Ligands , Magnetic Resonance Spectroscopy , Photosystem II Protein Complex/chemistry , Spin Labels , Water
6.
J Am Chem Soc ; 134(40): 16619-34, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22937979

ABSTRACT

Water binding to the Mn(4)O(5)Ca cluster of the oxygen-evolving complex (OEC) of Photosystem II (PSII) poised in the S(2) state was studied via H(2)(17)O- and (2)H(2)O-labeling and high-field electron paramagnetic resonance (EPR) spectroscopy. Hyperfine couplings of coordinating (17)O (I = 5/2) nuclei were detected using W-band (94 GHz) electron-electron double resonance (ELDOR) detected NMR and Davies/Mims electron-nuclear double resonance (ENDOR) techniques. Universal (15)N (I = ½) labeling was employed to clearly discriminate the (17)O hyperfine couplings that overlap with (14)N (I = 1) signals from the D1-His332 ligand of the OEC (Stich Biochemistry 2011, 50 (34), 7390-7404). Three classes of (17)O nuclei were identified: (i) one µ-oxo bridge; (ii) a terminal Mn-OH/OH(2) ligand; and (iii) Mn/Ca-H(2)O ligand(s). These assignments are based on (17)O model complex data, on comparison to the recent 1.9 Å resolution PSII crystal structure (Umena Nature 2011, 473, 55-60), on NH(3) perturbation of the (17)O signal envelope and density functional theory calculations. The relative orientation of the putative (17)O µ-oxo bridge hyperfine tensor to the (14)N((15)N) hyperfine tensor of the D1-His332 ligand suggests that the exchangeable µ-oxo bridge links the outer Mn to the Mn(3)O(3)Ca open-cuboidal unit (O4 and O5 in the Umena et al. structure). Comparison to literature data favors the Ca-linked O5 oxygen over the alternative assignment to O4. All (17)O signals were seen even after very short (≤15 s) incubations in H(2)(17)O suggesting that all exchange sites identified could represent bound substrate in the S(1) state including the µ-oxo bridge. (1)H/(2)H (I = ½, 1) ENDOR data performed at Q- (34 GHz) and W-bands complement the above findings. The relatively small (1)H/(2)H couplings observed require that all the µ-oxo bridges of the Mn(4)O(5)Ca cluster are deprotonated in the S(2) state. Together, these results further limit the possible substrate water-binding sites and modes within the OEC. This information restricts the number of possible reaction pathways for O-O bond formation, supporting an oxo/oxyl coupling mechanism in S(4).


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Thermococcus/metabolism , Water/metabolism , Binding Sites , Electron Spin Resonance Spectroscopy/methods , Manganese Compounds/chemistry , Manganese Compounds/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Thermococcus/chemistry
7.
Angew Chem Int Ed Engl ; 51(39): 9935-40, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-22907906

ABSTRACT

Using models derived from the X-ray structure of photosystem II, it is shown that the oxygen evolving complex in the S(2) state exists in two energetically similar and interconvertible forms. A longstanding question regarding the spectroscopy of the catalyst is thus answered: one form corresponds to the multiline g=2.0 EPR signal (see picture, right; O red, Mn purple, Ca yellow), and the other to the g≥4.1 signals (left).

8.
J Am Chem Soc ; 133(49): 19743-57, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22092013

ABSTRACT

Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S(n) (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S(2) state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 Å resolution was used and refined to obtain the optimum structure for the Mn(4)O(5)Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn(A)) of the cluster is deprotonated in the S(2) state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca(2+)-bound water molecules is strongly disfavored in the S(2) state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn(III). The present results impose limits for the total charge and the proton configuration of the OEC in the S(2) state, with implications for the cascade of events in the Kok cycle and for the water splitting mechanism.


Subject(s)
Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Protons , Catalytic Domain , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy/methods , Magnetics , Manganese/chemistry , Models, Molecular , Oxidation-Reduction , Water/chemistry
9.
Inorg Chem ; 50(17): 8238-51, 2011 Sep 05.
Article in English | MEDLINE | ID: mdl-21834536

ABSTRACT

An analysis of the electronic structure of the [Mn(II)Mn(III)(µ-OH)-(µ-piv)(2)(Me(3)tacn)(2)](ClO(4))(2) (PivOH) complex is reported. It displays features that include: (i) a ground 1/2 spin state; (ii) a small exchange (J) coupling between the two Mn ions; (iii) a mono-µ-hydroxo bridge, bis-µ-carboxylato motif; and (iv) a strongly coupled, terminally bound N ligand to the Mn(III). All of these features are observed in structural models of the oxygen evolving complex (OEC). Multifrequency electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) measurements were performed on this complex, and the resultant spectra simulated using the Spin Hamiltonian formalism. The strong field dependence of the (55)Mn-ENDOR constrains the (55)Mn hyperfine tensors such that a unique solution for the electronic structure can be deduced. Large hyperfine anisotropy is required to reproduce the EPR/ENDOR spectra for both the Mn(II) and Mn(III) ions. The large effective hyperfine tensor anisotropy of the Mn(II), a d(5) ion which usually exhibits small anisotropy, is interpreted within a formalism in which the fine structure tensor of the Mn(III) ion strongly perturbs the zero-field energy levels of the Mn(II)Mn(III) complex. An estimate of the fine structure parameter (d) for the Mn(III) of -4 cm(-1) was made, by assuming the intrinsic anisotropy of the Mn(II) ion is small. The magnitude of the fine structure and intrinsic (onsite) hyperfine tensor of the Mn(III) is consistent with the known coordination environment of the Mn(III) ion as seen from its crystal structure. Broken symmetry density functional theory (DFT) calculations were performed on the crystal structure geometry. DFT values for both the isotropic and the anisotropic components of the onsite (intrinsic) hyperfine tensors match those inferred from the EPR/ENDOR simulations described above, to within 5%. This study demonstrates that DFT calculations provide reliable estimates for spectroscopic observables of mixed valence Mn complexes, even in the limit where the description of a well isolated S = 1/2 ground state begins to break down.


Subject(s)
Magnetics , Manganese/chemistry , Photosystem II Protein Complex/chemistry , Quantum Theory , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Electrons , Models, Molecular , Molecular Structure
10.
Biochim Biophys Acta ; 1807(7): 829-40, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21406177

ABSTRACT

The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen-evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=½ spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-µ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.


Subject(s)
Cyanobacteria/metabolism , Methanol/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Spinacia oleracea/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Electron Spin Resonance Spectroscopy , Manganese/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism
11.
J Lipid Res ; 51(8): 2153-70, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20410019

ABSTRACT

Cardiolipin is a class of mitochondrial specific phospholipid, which is intricately involved in mitochondrial functionality. Differences in cardiolipin species exist in a variety of tissues and diseases. It has been demonstrated that the cardiolipin profile is a key modulator of the functions of many mitochondrial proteins. However, the chemical mechanism(s) leading to normal and/or pathological distribution of cardiolipin species remain elusive. Herein, we describe a novel approach for investigating the molecular mechanism of cardiolipin remodeling through a dynamic simulation. This approach applied data from shotgun lipidomic analyses of the heart, liver, brain, and lung mitochondrial lipidomes to model cardiolipin remodeling, including relative content, regiospecificity, and isomeric composition of cardiolipin species. Generated cardiolipin profiles were nearly identical to those determined by shotgun lipidomics. Importantly, the simulated isomeric compositions of cardiolipin species were further substantiated through product ion analysis. Finally, unique enzymatic activities involved in cardiolipin remodeling were assessed from the parameters used in the dynamic simulation of cardiolipin profiles. Collectively, we described, verified, and demonstrated a novel approach by integrating both lipidomic analysis and dynamic simulation to study cardiolipin biology. We believe this study provides a foundation to investigate cardiolipin metabolism and bioenergetic homeostasis in normal and disease states.


Subject(s)
Cardiolipins/chemistry , Cardiolipins/metabolism , Models, Biological , Acyltransferases/metabolism , Animals , Male , Mass Spectrometry , Mice , Mitochondria/metabolism , Organ Specificity , Reproducibility of Results , Stereoisomerism , Substrate Specificity
12.
J Phys Chem A ; 114(1): 589-94, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20000556

ABSTRACT

The coordination environment of Cu(II) in hydrated copper-exchanged zeolites was explored through the use of density functional theory (DFT) calculations of EPR parameters. Extensive experimental EPR data are available in the literature for hydrated copper-exchanged zeolites. The copper complex in hydrated copper-exchanged zeolites was previously proposed to be [Cu(H(2)O)(5)OH](+) based on empirical trends in tetragonal model complex EPR data. In this study, calculated EPR parameters for the previously proposed copper complex, [Cu(H(2)O)(5)OH](+), were compared to model complexes in which Cu(II) was coordinated to small silicate or aluminosilicate clusters as a first approximation of the impact of the zeolitic environment on the copper complex. Interpretation of the results suggests that Cu(II) is coordinated or closely associated with framework oxygen atoms within the zeolite structure. Additionally, it is proposed that the EPR parameters are dependent on the Si/Al ratio of the parent zeolite.


Subject(s)
Computer Simulation , Copper/chemistry , Models, Chemical , Organometallic Compounds/chemistry , Zeolites/chemistry , Electron Spin Resonance Spectroscopy , Models, Molecular
13.
Phys Chem Chem Phys ; 11(37): 8266-74, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19756283

ABSTRACT

The electron paramagnetic resonance (EPR) parameters for Cu(ii) diethylenetriamine imidazole complexes, which serve as empirical models for copper-containing proteins, were calculated using density functional theory (DFT). The orientations of three different types of imidazole ligands, imidazole, 1-methylimidazole and 4-methylimidazole, were investigated by rotating the ligand about the Cu(ii) imidazole bond. The calculated EPR values indicate that the imidazole ligands studied are oriented approximately +/-45 degrees with respect to the ligand plane. EPR parameters calculated using the B3LYP density functional in conjunction with the conductor-like solvent model (COSMO) show the best agreement with the experimentally determined EPR values. Good agreement with electron spin echo envelope modulation (ESEEM) data is achieved when an explicit water molecule is located near the remote nitrogen atom of the imidazole ligand. The implications of these DFT calculations for interpreting experimental pulsed EPR data for copper proteins containing imidazole ligands are discussed.


Subject(s)
Copper/chemistry , Imidazoles/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Electron Spin Resonance Spectroscopy , Ligands , Metalloproteins/chemistry , Models, Molecular , Molecular Conformation , Nitrogen/chemistry , Reproducibility of Results , Rotation
14.
J Phys Chem A ; 113(16): 4305-12, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19371116

ABSTRACT

Density functional theory (DFT) calculations of the electron paramagnetic resonance (EPR) parameters for a series of tetragonal Cu(II) model complexes were conducted. Model complexes containing four oxygen atoms directly coordinated to a Cu(II) metal center were chosen because of their importance in the Peisach-Blumberg truth tables and their frequent use in the interpretation of EPR spectra of Cu(II) proteins and copper-containing catalysts. Molecular g- and copper A-tensors were calculated using the BP86 and B3LYP density functionals. The DFT calculations reproduce the experimentally observed trends in the parallel components of the A- and g-tensors. Important insight into the structural basis for the empirical trends in g( parallel) and A( parallel) was obtained from the DFT calculations. Notably, g( parallel) systematically increases and A( parallel) systematically decreases with increasing Cu-O equatorial bond length. These results have been used to provide structural insight into copper EPR data for copper-exchanged zeolites.

15.
J Biol Inorg Chem ; 14(4): 547-57, 2009 May.
Article in English | MEDLINE | ID: mdl-19184131

ABSTRACT

Density functional theory (DFT) calculations of Cu(II) electron paramagnetic resonance (EPR) parameters for the octarepeat unit of the prion protein were conducted. Model complexes were constructed and optimized using the crystal structure of the octarepeat unit of the prion protein. Copper g and A tensors and nitrogen hyperfine and quadrupole coupling constants were calculated using DFT. Solvent effects were incorporated using the conductor-like screening model as well as through the inclusion of explicit water molecules. Calculations using the model with an additional axial water molecule added to the coordination sphere of the Cu(II) metal center give the best qualitative agreement for the copper g and A tensors. The S-band experimental EPR spectra were interpreted in light of the DFT calculations of the directly coordinated nitrogen hyperfine coupling constants which indicate that the three directly coordinated nitrogen atoms in the octarepeat unit are not equivalent. These results demonstrate that DFT calculations of EPR parameters can provide important insight with respect to the structural interpretation of experimental EPR data.


Subject(s)
Copper/chemistry , Electron Spin Resonance Spectroscopy/methods , Models, Chemical , Prions/chemistry , Animals , Computer Simulation , Copper/metabolism , Humans , Models, Molecular , Prions/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...