Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 638, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971728

ABSTRACT

BACKGROUND: Drought periods are major evolutionary triggers of wood anatomical adaptive variation in Lower Tropical Montane Cloud Forests tree species. We tested the influence of historical drought events on the effects of ecological stress memory on latewood width and xylem vessel traits in two relict hickory species (Carya palmeri and Carya myristiciformis) from central-eastern Mexico. We hypothesized that latewood width would decrease during historical drought years, establishing correlations between growth and water stress conditions, and that moisture deficit during past tree growth between successive drought events, would impact on wood anatomical features. We analyzed latewood anatomical traits that developed during historical drought and pre- and post-drought years in both species. RESULTS: We found that repeated periods of hydric stress left climatic signatures for annual latewood growth and xylem vessel traits that are essential for hydric adaptation in tropical montane hickory species. CONCLUSIONS: Our results demonstrate the existence of cause‒effect relationships in wood anatomical architecture and highlight the ecological stress memory linked with historical drought events. Thus, combined time-series analysis of latewood width and xylem vessel traits is a powerful tool for understanding the ecological behavior of hickory species.


Subject(s)
Droughts , Wood , Mexico , Wood/anatomy & histology , Wood/physiology , Wood/growth & development , Stress, Physiological , Xylem/physiology , Xylem/anatomy & histology , Tropical Climate , Trees/physiology , Trees/anatomy & histology , Trees/growth & development , Fagales/anatomy & histology , Fagales/physiology , Adaptation, Physiological
2.
Ecol Evol ; 12(8): e9228, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36016823

ABSTRACT

Fagus mexicana Martínez (Mexican beech) is an endangered Arcto-Tertiary Geoflora tree species that inhabit isolated and fragmented tropical montane cloud forests in eastern Mexico. Exploring past, present, and future climate change effects on the distribution of Mexican beech involves the study of spatial ecology and temporal patterns to develop conservation plans. These are key to understanding the niche conservatism of other forest communities with similar environmental requirements. For this study, we used species distribution models by combining occurrence records, to assess the distribution patterns and changes of the past (Last Glacial Maximum), present (1981-2010), and future (2040-2070) periods under two climate scenarios (SSP 3-7.0 & SSP 5-8.5). Next, we determined the habitat suitability and priority conservation areas of Mexican beech as associated with topography, land cover use, distance to the nearest town, and environmental variables. By considering the distribution of Mexican beech during different periods and under different climate scenarios, our study estimated that high-impact areas of Mexican beech forests were restricted to specific areas of the Sierra Madre Oriental that constitute refugia from the Last Glacial Maximum. Regrettably, our results exhibited that Mexican beech distribution has decreased 71.3% since the Last Glacial Maximum and this trend will for the next 50 years, migrating to specific refugia at higher altitudes. This suggests that the states of Hidalgo, Veracruz, and Puebla will preserve the habitat suitability features as ecological refugia, related to high moisture and north-facing slopes. For isolated and difficult-to-access areas, the proposed methods are powerful tools for relict-tree species, which deserve further conservation.

SELECTION OF CITATIONS
SEARCH DETAIL
...