Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 90(8): 083303, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472608

ABSTRACT

The Time-of-Flight (TOF) technique coupled with semiconductorlike detectors, as silicon carbide and diamond, is one of the most promising diagnostic methods for high-energy, high repetition rate, laser-accelerated ions allowing a full on-line beam spectral characterization. A new analysis method for reconstructing the energy spectrum of high-energy laser-driven ion beams from TOF signals is hereby presented and discussed. The proposed method takes into account the detector's working principle, through the accurate calculation of the energy loss in the detector active layer, using Monte Carlo simulations. The analysis method was validated against well-established diagnostics, such as the Thomson parabola spectrometer, during an experimental campaign carried out at the Rutherford Appleton Laboratory (UK) with the high-energy laser-driven protons accelerated by the VULCAN Petawatt laser.

2.
Phys Med ; 54: 166-172, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30076107

ABSTRACT

The main purpose of this paper is to quantitatively study the possibility of delivering dose distributions of clinical relevance with laser-driven proton beams. A Monte Carlo application has been developed with the Geant4 toolkit, simulating the ELIMED (MEDical and multidisciplinary application at ELI-Beamlines) transport and dosimetry beam line which is being currently installed at the ELI-Beamlines in Prague (CZ). The beam line will be used to perform irradiations for multidisciplinary studies, with the purpose of demonstrating the possible use of optically accelerated ion beams for therapeutic purposes. The ELIMED Geant4-based application, already validated against reference transport codes, accurately simulates each single element of the beam line, necessary to collect the accelerated beams and to select them in energy. Transversal dose distributions at the irradiation point have been studied and optimized to try to quantitatively answer the question if such kind of beam lines, and specifically the systems developed for ELIMED in Prague, will be actually able to transport ion beams not only for multidisciplinary applications, such as pitcher-catcher nuclear reactions (e.g. neutrons), PIXE analysis for cultural heritage and space radiation, but also for delivering dose patterns of clinical relevance in a future perspective of possible medical applications.


Subject(s)
Lasers , Monte Carlo Method , Particle Accelerators , Proton Therapy/instrumentation , Radiation Dosage , Radiometry , Radiotherapy Dosage
3.
Neuroscience ; 250: 546-56, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23906635

ABSTRACT

Considerable evidence indicates that dopamine (DA) influences tissue plasminogen activator (tPA)-mediated proteolytic processing of the precursor of brain-derived neurotrophic factor (proBDNF) into mature BDNF (mBDNF). However, specific roles in this process for the dopamine D3 receptor (D3R) and the underlying molecular mechanisms are yet to be fully characterized. In the present study, we hypothesized that D3R deletion could influence tPA activity in the prefrontal cortex and hippocampus. Using D3R knockout (D3(-/-)) mice, we show that receptor inactivation is associated with increased tPA expression/activity both in the prefrontal cortex and, to a greater extent, in the hippocampus. Augmented tPA expression in D3(-/-) mice correlated with increased BDNF mRNA levels, plasmin/plasminogen protein ratio and the conversion of proBDNF into mBDNF, as well as enhanced tPA and mBDNF immunoreactivity, as determined by quantitative real time polymerase chain reaction (qRT-PCR), immunoblot and immunohistochemistry. In addition, when compared to wild-type controls, D3(-/-) mice exhibited increased basal activation of the canonical cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-driven Akt/cAMP-response element-binding protein (CREB) signaling cascade, as determined by the increased Akt phosphorylation both at Thr304 and Ser473 residues, of DA and cAMP-regulated protein of 32kDa (DARPP-32) at Thr34 and a phosphorylation state-dependent inhibition of glycogen synthetase kinase-3ß (GSK-3ß) at Ser9, a substrate of Akt whose constitutive function impairs normal CREB transcriptional activity through phosphorylation at its Ser129 residue. Accordingly, CREB phosphorylation at Ser133 was significantly increased in D3(-/-) mice, whereas the GSK-3ß-dependent phosphorylation at Ser129 was diminished. Altogether, our finding reveals that mice lacking D3Rs show enhanced tPA proteolytic activity on BDNF which may involve, at least in part, a potentiated Akt/CREB signaling, possibly due to hindered GSK-3ß activity.


Subject(s)
Hippocampus/metabolism , Prefrontal Cortex/metabolism , Receptors, Dopamine D3/genetics , Receptors, Dopamine D3/physiology , Tissue Plasminogen Activator/metabolism , Animals , Blotting, Western , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Fibrinolysin/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Immunohistochemistry , Learning/physiology , Male , Memory/physiology , Mice , Mice, Knockout , Oncogene Protein v-akt/metabolism , Phosphorylation , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Ribosomal, 18S/metabolism , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...