Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(10): e0164582, 2016.
Article in English | MEDLINE | ID: mdl-27736999

ABSTRACT

Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.


Subject(s)
Bacillus/isolation & purification , Microbiological Techniques/methods , Specimen Handling/instrumentation , Spores, Bacterial/isolation & purification , Bacillus/classification , Bacillus/physiology , Colony Count, Microbial , Environmental Microbiology , Microbiological Techniques/instrumentation , Models, Statistical , Specimen Handling/methods , Surface Properties , Time Factors
2.
J Proteome Res ; 13(4): 2215-22, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24611607

ABSTRACT

Ensuring data quality and proper instrument functionality is a prerequisite for scientific investigation. Manual quality assurance is time-consuming and subjective. Metrics for describing liquid chromatography mass spectrometry (LC-MS) data have been developed; however, the wide variety of LC-MS instruments and configurations precludes applying a simple cutoff. Using 1150 manually classified quality control (QC) data sets, we trained logistic regression classification models to predict whether a data set is in or out of control. Model parameters were optimized by minimizing a loss function that accounts for the trade-off between false positive and false negative errors. The classifier models detected bad data sets with high sensitivity while maintaining high specificity. Moreover, the composite classifier was dramatically more specific than single metrics. Finally, we evaluated the performance of the classifier on a separate validation set where it performed comparably to the results for the testing/training data sets. By presenting the methods and software used to create the classifier, other groups can create a classifier for their specific QC regimen, which is highly variable lab-to-lab. In total, this manuscript presents 3400 LC-MS data sets for the same QC sample (whole cell lysate of Shewanella oneidensis), deposited to the ProteomeXchange with identifiers PXD000320-PXD000324.


Subject(s)
Chromatography, Liquid/methods , Chromatography, Liquid/standards , Mass Spectrometry/methods , Mass Spectrometry/standards , Models, Statistical , Quality Control , Reproducibility of Results , Research Design
3.
Appl Environ Microbiol ; 78(3): 846-54, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22138998

ABSTRACT

Recovery of spores from environmental surfaces varies due to sampling and analysis methods, spore size and characteristics, surface materials, and environmental conditions. Tests were performed to evaluate a new, validated sponge wipe method using Bacillus atrophaeus spores. Testing evaluated the effects of spore concentration and surface material on recovery efficiency (RE), false-negative rate (FNR), limit of detection (LOD), and their uncertainties. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show roughly linear dependences of RE and FNR on surface roughness, with smoother surfaces resulting in higher mean REs and lower FNRs. REs were not influenced by the low spore concentrations tested (3.10 × 10(-3) to 1.86 CFU/cm(2)). Stainless steel had the lowest mean FNR (0.123), and plastic had the highest mean FNR (0.479). The LOD(90) (≥1 CFU detected 90% of the time) varied with surface material, from 0.015 CFU/cm(2) on stainless steel up to 0.039 on plastic. It may be possible to improve sampling results by considering surface roughness in selecting sampling locations and interpreting spore recovery data. Further, FNR values (calculated as a function of concentration and surface material) can be used presampling to calculate the numbers of samples for statistical sampling plans with desired performance and postsampling to calculate the confidence in characterization and clearance decisions.


Subject(s)
Bacillus/isolation & purification , Diagnostic Errors , Environmental Microbiology , Microbiological Techniques/methods , Specimen Handling/methods , Spores, Bacterial/isolation & purification , Bacterial Load , Sensitivity and Specificity , Surface Properties
4.
J Magn Reson Imaging ; 31(5): 1091-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20432343

ABSTRACT

PURPOSE: To investigate the ability of proton ((1)H) magnetic resonance imaging (MRI) to distinguish between pulmonary inflammation and fibrosis. MATERIALS AND METHODS: Three groups of Sprague-Dawley rats (n = 5) were instilled intratracheally with bleomycin (2.5 U/kg or 3.5 U/kg) in saline or with saline only. Rats were imaged at 2.0 Tesla using a multi-slice Carr-Purcell-Meilboom-Gill (CPMG) sequence with 6 ms echo spacing. Signal intensity (S(0)) and T(2) were calculated on a pixel-by-pixel basis using images collected before dosing and 1, 2, 4, and 7 weeks after. At each time point, data from dosed animals were compared with controls, and bivariate statistical analysis was used to classify image pixels containing abnormal tissue. At week 7, pulmonary function tests were performed, then all rats were killed, left lungs were formalin fixed and tri-chrome stained for histological analysis of collagen content, and right lungs were used to measure water and hydroxyproline (collagen) content. RESULTS: The product S(0)xT(2) significantly correlated with water and collagen content in the high-dose group (P = 0.004 and P = 0.03, respectively). However, S(0) and T(2) of abnormal tissue were correlated for all time points (r = 0.93, P < 0.001), and could not distinguish inflammation from fibrosis. CONCLUSION: MRI can be used to confidently localize pulmonary inflammation and fibrosis, but it lacks specificity.


Subject(s)
Bleomycin , Disease Models, Animal , Magnetic Resonance Imaging/methods , Pneumonia/chemically induced , Pneumonia/diagnosis , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/diagnosis , Animals , Humans , Male , Protons , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
5.
PLoS One ; 4(8): e6670, 2009 Aug 18.
Article in English | MEDLINE | ID: mdl-19688093

ABSTRACT

In this work, we compare two methods for evaluating and quantifying pulmonary airspace enlargement in a mouse model of chronic cigarette smoke exposure. Standard stereological sample preparation, sectioning, and imaging of mouse lung tissues were performed for semi-automated acquisition of mean linear intercept (L(m)) data. After completion of the L(m) measurements, D(2), a metric of airspace enlargement, was measured in a blinded manner on the same lung images using a fully automated technique developed in-house. An analysis of variance (ANOVA) shows that although L(m) was able to separate the smoke-exposed and control groups with statistical significance (p = 0.034), D(2) was better able to differentiate the groups (p<0.001) and did so without any overlap between the control and smoke-exposed individual animal data. In addition, the fully automated implementation of D(2) represented a time savings of at least 24x over semi-automated L(m) measurements. Although D(2) does not provide 3D stereological metrics of airspace dimensions as L(m) does, results show that it has higher sensitivity and specificity for detecting the subtle airspace enlargement one would expect to find in mild or early stage emphysema. Therefore, D(2) may serve as a more accurate screening measure for detecting early lung disease than L(m).


Subject(s)
Lung/anatomy & histology , Smoke , Analysis of Variance , Animals , Female , Mice , Mice, Inbred AKR
SELECTION OF CITATIONS
SEARCH DETAIL
...