Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36450377

ABSTRACT

BACKGROUND: Immune effector cell-associated neurotoxicity syndrome (ICANS) is a clinical and neuropsychiatric syndrome that can occur days to weeks following administration chimeric antigen receptor (CAR) T-cell therapy. Manifestations of ICANS range from encephalopathy and aphasia to cerebral edema and death. Because the onset and time course of ICANS is currently unpredictable, prolonged hospitalization for close monitoring following CAR T-cell infusion is a frequent standard of care. METHODS: This study was conducted at Brigham and Women's Hospital from April 2015 to February 2020. A cohort of 199 hospitalized patients treated with CAR T-cell therapy was used to develop a combined hidden Markov model and lasso-penalized logistic regression model to forecast the course of ICANS. Model development was done using leave-one-patient-out cross validation. RESULTS: Among the 199 patients included in the analysis 133 were male (66.8%), and the mean (SD) age was 59.5 (11.8) years. 97 patients (48.7%) developed ICANS, of which 59 (29.6%) experienced severe grades 3-4 ICANS. Median time of ICANS onset was day 9. Selected clinical predictors included maximum daily temperature, C reactive protein, IL-6, and procalcitonin. The model correctly predicted which patients developed ICANS and severe ICANS, respectively, with area under the curve of 96.7% and 93.2% when predicting 5 days ahead, and area under the curve of 93.2% and 80.6% when predicting the entire future risk trajectory looking forward from day 5. Forecasting performance was also evaluated over time horizons ranging from 1 to 7 days, using metrics of forecast bias, mean absolute deviation, and weighted average percentage error. CONCLUSION: The forecasting model accurately predicts risk of ICANS following CAR T-cell infusion and the time course ICANS follows once it has begun.Cite Now.


Subject(s)
Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Female , Male , Middle Aged , Immunotherapy, Adoptive/adverse effects , Logistic Models , Neurotoxicity Syndromes/etiology , Cell- and Tissue-Based Therapy
2.
Neural Comput ; 33(5): 1269-1299, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33617745

ABSTRACT

It is of great interest to characterize the spiking activity of individual neurons in a cell ensemble. Many different mechanisms, such as synaptic coupling and the spiking activity of itself and its neighbors, drive a cell's firing properties. Though this is a widely studied modeling problem, there is still room to develop modeling solutions by simplifications embedded in previous models. The first shortcut is that synaptic coupling mechanisms in previous models do not replicate the complex dynamics of the synaptic response. The second is that the number of synaptic connections in these models is an order of magnitude smaller than in an actual neuron. In this research, we push this barrier by incorporating a more accurate model of the synapse and propose a system identification solution that can scale to a network incorporating hundreds of synaptic connections. Although a neuron has hundreds of synaptic connections, only a subset of these connections significantly contributes to its spiking activity. As a result, we assume the synaptic connections are sparse, and to characterize these dynamics, we propose a Bayesian point-process state-space model that lets us incorporate the sparsity of synaptic connections within the regularization technique into our framework. We develop an extended expectation-maximization. algorithm to estimate the free parameters of the proposed model and demonstrate the application of this methodology to the problem of estimating the parameters of many dynamic synaptic connections. We then go through a simulation example consisting of the dynamic synapses across a range of parameter values and show that the model parameters can be estimated using our method. We also show the application of the proposed algorithm in the intracellular data that contains 96 presynaptic connections and assess the estimation accuracy of our method using a combination of goodness-of-fit measures.

3.
Neural Comput ; 32(11): 2145-2186, 2020 11.
Article in English | MEDLINE | ID: mdl-32946712

ABSTRACT

Marked point process models have recently been used to capture the coding properties of neural populations from multiunit electrophysiological recordings without spike sorting. These clusterless models have been shown in some instances to better describe the firing properties of neural populations than collections of receptive field models for sorted neurons and to lead to better decoding results. To assess their quality, we previously proposed a goodness-of-fit technique for marked point process models based on time rescaling, which for a correct model produces a set of uniform samples over a random region of space. However, assessing uniformity over such a region can be challenging, especially in high dimensions. Here, we propose a set of new transformations in both time and the space of spike waveform features, which generate events that are uniformly distributed in the new mark and time spaces. These transformations are scalable to multidimensional mark spaces and provide uniformly distributed samples in hypercubes, which are well suited for uniformity tests. We discuss the properties of these transformations and demonstrate aspects of model fit captured by each transformation. We also compare multiple uniformity tests to determine their power to identify lack-of-fit in the rescaled data. We demonstrate an application of these transformations and uniformity tests in a simulation study. Proofs for each transformation are provided in the appendix.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2933-2938, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946505

ABSTRACT

Behavioral outcomes in many cognitive tasks are often recorded in a trial structure at discrete times. To adapt to this structure, neural encoder and decoder models have been built to take into account the trial organization to characterize the connection between brain dynamics and behavior, e.g. through latent dynamical models. The challenge of these models is that they are limited to discrete trial times while neural data is continuous. Here, we propose a marked-point process framework to characterize multivariate behavioral outcomes recorded during a trial-structured cognitive task, to build an estimation of cognitive state at a fine time resolution. We propose a state-space marked-point process modeling framework to characterize the relationship between observed behavior and underlying dynamical cognitive processes. We define the framework for a class of behavioral readouts by a response time and a discrete mark signifying an observed binary decision, and develop the state estimation and system identification steps. We define the filter and smoother for the marked-point process observation and develop an EM algorithm to estimate the model's free parameters. We demonstrate this modeling approach in a behavioral readout captured while participants perform an emotional conflict resolution task (ECR) and show that we can estimate underlying cognitive processes at a fine temporal resolution beyond the trial by trial approach.


Subject(s)
Algorithms , Cognition , Decision Making , Models, Psychological , Brain/physiology , Humans , Reaction Time
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2362-2365, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440881

ABSTRACT

Biophysical models are widely used to characterize temporal dynamics of the brain networks on different topological and spatial scales. In parallel, the state-space modeling framework with point process observations has been successfully applied in characterizing spiking activity of neuronal ensembles in response to different dynamical covariates. Parameter estimation in biophysical models is generally done heuristically, which hampers their applicability and interpretability. Heuristic parameter estimation becomes an intractable problem when the number of model parameters grows. Here, we propose an algorithm for estimating biophysical model parameters using point-process models and a state-space framework. The framework provides methods for parameter estimation as well as model validation. We demonstrate the application of this methodology to the problem of estimating the parameters of a dynamic synapse model. We generate simulation data for the dynamic synapse across a range of parameters values and assess the estimation accuracy of our method using a combination of goodness-of-fit measures. The proposed methodology can be applied broadly to parameter estimation problems across a broad range of biophysical models, including Hodgkin-Huxley models and network models.


Subject(s)
Algorithms , Neurons/physiology , Synapses/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...