Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Res ; 57(1): 22, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704609

ABSTRACT

BACKGROUND: Chromatin dynamics is deeply involved in processes that require access to DNA, such as transcriptional regulation. Among the factors involved in chromatin dynamics at gene regulatory regions are general regulatory factors (GRFs). These factors contribute to establishment and maintenance of nucleosome-depleted regions (NDRs). These regions are populated by nucleosomes through histone deposition and nucleosome sliding, the latter catalyzed by a number of ATP-dependent chromatin remodeling complexes, including ISW1a. It has been observed that GRFs can act as barriers against nucleosome sliding towards NDRs. However, the relative ability of the different GRFs to hinder sliding activity is currently unknown. RESULTS: Considering this, we performed a comparative analysis for the main GRFs, with focus in their ability to modulate nucleosome sliding mediated by ISW1a. Among the GRFs tested in nucleosome remodeling assays, Rap1 was the only factor displaying the ability to hinder the activity of ISW1a. This effect requires location of the Rap1 cognate sequence on linker that becomes entry DNA in the nucleosome remodeling process. In addition, Rap1 was able to hinder nucleosome assembly in octamer transfer assays. Concurrently, Rap1 displayed the highest affinity for and longest dwell time from its target sequence, compared to the other GRFs tested. Consistently, through bioinformatics analyses of publicly available genome-wide data, we found that nucleosome occupancy and histone deposition in vivo are inversely correlated with the affinity of Rap1 for its target sequences in the genome. CONCLUSIONS: Our findings point to DNA binding affinity, residence time and location at particular translational positions relative to the nucleosome core as the key features of GRFs underlying their roles played in nucleosome sliding and assembly.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins , Nucleosomes , Nucleosomes/metabolism , Nucleosomes/genetics , Chromatin Assembly and Disassembly/physiology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histones/metabolism
2.
Cell Biosci ; 13(1): 232, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135881

ABSTRACT

BACKGROUND: mTORC2 is a critical regulator of cytoskeleton organization, cell proliferation, and cancer cell survival. Activated mTORC2 induces maximal activation of Akt by phosphorylation of Ser-473, but regulation of Akt activity and signaling crosstalk upon growth factor stimulation are still unclear. RESULTS: We identified that NUAK1 regulates growth factor-dependent activation of Akt by two mechanisms. NUAK1 interacts with mTORC2 components and regulates mTORC2-dependent activation of Akt by controlling lysosome positioning and mTOR association with this organelle. A second mechanism involves NUAK1 directly phosphorylating Akt at Ser-473. The effect of NUAK1 correlated with a growth factor-dependent activation of specific Akt substrates. NUAK1 induced the Akt-dependent phosphorylation of FOXO1/3a (Thr-24/Thr-32) but not of TSC2 (Thr-1462). According to a subcellular compartmentalization that could explain NUAK1's differential effect on the Akt substrates, we found that NUAK1 is associated with early endosomes but not with plasma membrane, late endosomes, or lysosomes. NUAK1 was required for the Akt/FOXO1/3a axis, regulating p21CIP1, p27KIP1, and FoxM1 expression and cancer cell survival upon EGFR stimulation. Pharmacological inhibition of NUAK1 potentiated the cell death effect induced by Akt or mTOR pharmacological blockage. Analysis of human tissue data revealed that NUAK1 expression positively correlates with EGFR expression and Akt Ser-473 phosphorylation in several human cancers. CONCLUSIONS: Our results showed that NUAK1 kinase controls mTOR subcellular localization and induces Akt phosphorylation, demonstrating that NUAK1 regulates the growth factor-dependent activation of Akt signaling. Therefore, targeting NUAK1, or co-targeting it with Akt or mTOR inhibitors, may be effective in cancers with hyperactivated Akt signaling.

3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894925

ABSTRACT

The establishment and maintenance of nucleosome-free regions (NFRs) are prominent processes within chromatin dynamics. Transcription factors, ATP-dependent chromatin remodeling complexes (CRCs) and DNA sequences are the main factors involved. In Saccharomyces cerevisiae, CRCs such as RSC contribute to chromatin opening at NFRs, while other complexes, including ISW1a, contribute to NFR shrinking. Regarding DNA sequences, growing evidence points to poly(dA:dT) tracts as playing a direct role in active processes involved in nucleosome positioning dynamics. Intriguingly, poly(dA:dT)-tract-containing NFRs span asymmetrically relative to the location of the tract by a currently unknown mechanism. In order to obtain insight into the role of poly(dA:dT) tracts in nucleosome remodeling, we performed a systematic analysis of their influence on the activity of ISW1a and RSC complexes. Our results show that poly(dA:dT) tracts differentially affect the activity of these CRCs. Moreover, we found differences between the effects exerted by the two alternative tract orientations. Remarkably, tract-containing linker DNA is taken as exit DNA for nucleosome sliding catalyzed by RSC. Our findings show that defined DNA sequences, when present in linker DNA, can dictate in which direction a remodeling complex has to slide nucleosomes and shed light into the mechanisms underlying asymmetrical chromatin opening around poly(dA:dT) tracts.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , Poly dA-dT , Chromatin/genetics , DNA/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatin Assembly and Disassembly , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
Biochim Biophys Acta Gene Regul Mech ; 1865(1): 194781, 2022 01.
Article in English | MEDLINE | ID: mdl-34963628

ABSTRACT

Diverse factors play roles in chromatin dynamics, including linker proteins. Among them are high mobility group (HMG) box family proteins and linker histones. In the yeast Saccharomyces cerevisiae, Hmo1 has been identified as an HMG-box protein. This protein displays properties that are in agreement with this allocation. However, a number of studies have postulated that Hmo1 functions as a linker histone in yeast. On the other hand, when discovered, the Hho1 protein was identified as a linker histone. While multiple studies support this classification, some findings point to characteristics of Hho1 that are dissimilar to those commonly assigned to linker histones. In order to better understand the roles played by Hmo1 and Hho1 in chromatin dynamics and transcriptional regulation, we performed several analyses directly comparing these two proteins. Our analyses of genome-wide binding profiles support the belonging of Hmo1 to the HMGB family and Hho1 to the linker histones family. Interestingly, by performing protein-protein interaction analyses we found that both Hmo1 and Hho1 display physical interaction with the ATP-dependent chromatin remodeling complexes RSC, ISW1a and SWI/SNF. Moreover, by carrying out nucleosome remodeling assays, we found that both proteins stimulate the activity of the ISW1a complex. However, in the case of RSC, Hmo1 and Hho1 displayed differential properties, with Hho1 mainly showing an inhibitory effect. Our results are in agreement with the opposite roles played by RSC and ISW1a in chromatin dynamics and transcriptional regulation, and expand the view for the roles played by Hho1 and linker histones.


Subject(s)
Adenosine Triphosphate , Histones , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/genetics , Chromatin Assembly and Disassembly , Histones/metabolism , Nucleosomes , Saccharomyces cerevisiae Proteins/metabolism
5.
Article in English | MEDLINE | ID: mdl-29778644

ABSTRACT

SALL2 is a transcription factor involved in development and disease. Deregulation of SALL2 has been associated with cancer, suggesting that it plays a role in the disease. However, how SALL2 is regulated and why is deregulated in cancer remain poorly understood. We previously showed that the p53 tumor suppressor represses SALL2 under acute genotoxic stress. Here, we investigated the effect of Histone Deacetylase Inhibitor (HDACi) Trichostatin A (TSA), and involvement of Sp1 on expression and function of SALL2 in Jurkat T cells. We show that SALL2 mRNA and protein levels were enhanced under TSA treatment. Both, TSA and ectopic expression of Sp1 transactivated the SALL2 P2 promoter. This transactivation effect was blocked by the Sp1-binding inhibitor mithramycin A. Sp1 bound in vitro and in vivo to the proximal region of the P2 promoter. TSA induced Sp1 binding to the P2 promoter, which correlated with dynamic changes on H4 acetylation and concomitant recruitment of p300 or HDAC1 in a mutually exclusive manner. Our results suggest that TSA-induced Sp1-Lys703 acetylation contributes to the transcriptional activation of the P2 promoter. Finally, using a CRISPR/Cas9 SALL2-KO Jurkat-T cell model and gain of function experiments, we demonstrated that SALL2 upregulation is required for TSA-mediated cell death. Thus, our study identified Sp1 as a novel transcriptional regulator of SALL2, and proposes a novel epigenetic mechanism for SALL2 regulation in Jurkat-T cells. Altogether, our data support SALL2 function as a tumor suppressor, and SALL2 involvement in cell death response to HDACi.

6.
Biochim Biophys Acta Gene Regul Mech ; 1860(3): 316-326, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28089519

ABSTRACT

Diverse chromatin modifiers are involved in regulation of gene expression at the level of transcriptional regulation. Among these modifiers are ATP-dependent chromatin remodelers, where the SWI/SNF complex is the founding member. It has been observed that High Mobility Group (HMG) proteins can influence the activity of a number of these chromatin remodelers. In this context, we have previously demonstrated that the yeast HMG proteins Nhp6 and Hmo1 can stimulate SWI/SNF activity. Here, we studied the genome-wide binding patterns of Nhp6, Hmo1 and the SWI/SNF complex, finding that most of gene promoters presenting high occupancy of this complex also display high enrichment of these HMG proteins. Using deletion mutant strains we demonstrate that binding of SWI/SNF is significantly reduced at numerous genomic locations by deletion of NHP6 and/or deletion of HMO1. Moreover, alterations in the nucleosome landscape take place at gene promoters undergoing reduced SWI/SNF binding. Additional analyses show that these effects also correlate with alterations in transcriptional activity. Our results suggest that, besides the ability to stimulate SWI/SNF activity, these HMG proteins are able to assist the loading of this complex onto gene regulatory regions.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , HMGN Proteins/metabolism , High Mobility Group Proteins/metabolism , Nucleosomes/metabolism , Regulatory Sequences, Nucleic Acid/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Chromosomal Proteins, Non-Histone/genetics , HMGN Proteins/genetics , High Mobility Group Proteins/genetics , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...