Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0266420, 2022.
Article in English | MEDLINE | ID: mdl-35390050

ABSTRACT

BACKGROUND: Long-lasting insecticidal nets are an effective tool in reducing malaria transmission. However, with increasing insecticide resistance little is known about how physiologically resistant malaria vectors behave around a human-occupied bed net, despite their importance in malaria transmission. We used the Mbita bednet trap to assess the host-seeking behavior of insecticide-resistant Anopheles gambiae mosquitoes under semi-field conditions. The trap incorporates a mosquito netting panel which acts as a mechanical barrier that prevents host-seeking mosquitoes from reaching the human host baiting the trap. METHODS: Susceptible and pyrethroid-resistant colonies of female Anopheles gambiae mosquitoes aged 3-5 days old were used in this study. The laboratory-bred mosquitoes were color-marked with fluorescent powders and released inside a semi-field environment where a human subject slept inside a bednet trap erected in a traditional African hut. The netting panel inside the trap was either untreated (control) or deltamethrin-impregnated. The mosquitoes were released outside the hut. Only female mosquitoes were used. A window exit trap was installed on the hut to catch mosquitoes exiting the hut. A prokopack aspirator was used to collect indoor and outdoor resting mosquitoes. In addition, clay pots were placed outside the hut to collect outdoor resting mosquitoes. The F1 progeny of wild-caught mosquitoes were also used in these experiments. RESULTS: The mean number of resistant mosquitoes trapped in the deltamethrin-impregnated bed net trap was higher (mean = 50.21± 3.7) compared to susceptible counterparts (mean + 22.4 ± 1.31) (OR = 1.445; P<0.001). More susceptible mosquitoes were trapped in an untreated (mean = 51.9 ± 3.6) compared to a deltamethrin-treated bed net trap (mean = 22.4 ± 1.3) (OR = 2.65; P<0.001). Resistant mosquitoes were less likely to exit the house when a treated bed net was present compared to the susceptible mosquitoes. The number of susceptible mosquitoes caught resting outdoors (mean + 28.6 ± 2.22) when a treated bed net was hanged was higher than when untreated bednet was present inside the hut (mean = 4.6 ± 0.74). The susceptible females were 2.3 times more likely to stay outdoors away from the treated bed net (OR = 2.25; 95% CI = [1.7-2.9]; P<0.001). CONCLUSION: The results show that deltamethrin-treatment of netting panels inside the bednet trap did not alter the host-seeking behavior of insecticide-resistant female An. gambiae mosquitoes. On the contrary, susceptible females exited the hut and remained outdoors when a treated net was used. However, further investigations of the behavior of resistant mosquitoes under natural conditions should be undertaken to confirm these observations and improve the current intervention which are threatened by insecticide resistance and altered vector behavior.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Animals , Anopheles/physiology , Female , Humans , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors/physiology , Pyrethrins/pharmacology
2.
PLoS One ; 15(2): e0224718, 2020.
Article in English | MEDLINE | ID: mdl-32097407

ABSTRACT

BACKGROUND: Understanding the interactions between increased insecticide resistance and resting behaviour patterns of malaria mosquitoes is important for planning of adequate vector control. This study was designed to investigate the resting behavior, host preference and rates of Plasmodium falciparum infection in relation to insecticide resistance of malaria vectors in different ecologies of western Kenya. METHODS: Anopheles mosquito collections were carried out during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya using pyrethrum spray catches (PSC), mechanical aspiration (Prokopack) for indoor collections, clay pots, pit shelter and Prokopack for outdoor collections. WHO tube bioassay was used to determine levels of phenotypic resistance of indoor and outdoor collected mosquitoes to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for knockdown resistance mutations (1014S and 1014F) and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections. RESULTS: Anopheles gambiae s.l. was the most predominant species (75%, n = 2706) followed by An. funestus s.l. (25%, n = 860). An. gambiae s.s hereafter (An. gambiae) accounted for 91% (95% CI: 89-93) and An. arabiensis 8% (95% CI: 6-9) in Bungoma, while in Kisian, An. arabiensis composition was 60% (95% CI: 55-66) and An. gambiae 39% (95% CI: 34-44). The resting densities of An. gambiae s.l and An. funestus were higher indoors than outdoor in both sites (An. gambiae s.l; F1, 655 = 41.928, p < 0.0001, An. funestus; F1, 655 = 36.555, p < 0.0001). The mortality rate for indoor and outdoor resting An. gambiae s.l F1 progeny was 37% (95% CI: 34-39) vs 67% (95% CI: 62-69) respectively in Bungoma. In Kisian, the mortality rate was 67% (95% CI: 61-73) vs 76% (95% CI: 71-80) respectively. The mortality rate for F1 progeny of An. funestus resting indoors in Bungoma was 32% (95% CI: 28-35). The 1014S mutation was only detected in indoor resitng An. arabiensis. Similarly, the 1014F mutation was present only in indoor resting An. gambiae. The sporozoite rates were highest in An. funestus followed by An. gambiae, and An. arabiensis resting indoors at 11% (34/311), 8% (47/618) and 4% (1/27) respectively in Bungoma. Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 9% (82/956) and 4% (8/190) for outdoors. In Kisian, the sporozoite rate was 1% (1/112) for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections (n = 73). CONCLUSION: The study reports high indoor resting densities of An. gambiae and An. funestus, insecticide resistance, and persistence of malaria transmission indoors regardless of the use of long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.


Subject(s)
Anopheles/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mosquito Control/methods , Mosquito Vectors/physiology , Plasmodium falciparum/immunology , Rest/physiology , Animals , Anopheles/classification , Anopheles/parasitology , Enzyme-Linked Immunosorbent Assay , Feeding Behavior/drug effects , Female , Genotype , Host-Seeking Behavior/drug effects , Insecticide Resistance/genetics , Insecticide-Treated Bednets , Insecticides/pharmacology , Kenya/epidemiology , Malaria, Falciparum/transmission , Nitriles/pharmacology , Polymerase Chain Reaction , Pyrethrins/pharmacology , Sporozoites/immunology
3.
Infect Ecol Epidemiol ; 6: 32322, 2016.
Article in English | MEDLINE | ID: mdl-27863533

ABSTRACT

BACKGROUND: Rift Valley fever (RVF) is a vector-borne zoonotic disease that has an impact on human health and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift Valley fever virus (RVFV). OBJECTIVES: To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya, with an aim of developing a risk map for spatial prediction of RVF outbreaks. METHODOLOGY: The study used data on vector presence and ecological niche modelling (MaxEnt) algorithm to predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes and larvae in the study area. We used present (2000) and future (2050) Bioclim climate databases to model the vector distribution. RESULTS: Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus, Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically significant. CONCLUSION: Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed the highest predictive potential for the four species.

4.
Malar J ; 5: 88, 2006 Oct 12.
Article in English | MEDLINE | ID: mdl-17038187

ABSTRACT

BACKGROUND: Physical objects like vegetation can influence oviposition by mosquitoes on soil or water substrates. Anopheles gambiae s. l. is generally thought to utilize puddles over bare soil as its prime larval habitat and to avoid standing water populated with vegetation. In Kisian, Kenya near Kisumu, water often pools in grassy drainage areas both during and after periods of infrequent rains, when typical puddle habitats become scarce because of drying. This raised the question of whether An. gambiae has the behavioural flexibility to switch ovipositional sites when puddles over bare soil are unavailable. METHODS: To test whether presence and height of grasses influenced oviposition, wild-caught gravid An. gambiae s. l. were offered paired choices between wet, bare soil and wet soil populated with mixed grasses or grasses of differing height. No-choice tests were also conducted by giving females either grassy soil or bare soil. RESULTS: In choice tests, females laid four times more eggs on bare, wet soil than soil populated with grasses. However in no-choice tests, egg output was not significantly different whether grasses were present or not. Females laid significantly more eggs on soil populated with short grass than with medium, or tall grass. CONCLUSION: This work shows An. gambiae s. l. has the capacity to oviposit into grassy aquatic habitats when typical puddles over bare soil are unavailable. This knowledge will need to be considered in the design and implementation of programmes aimed at reducing malaria transmission by suppression of An. gambiae s. l. immatures.


Subject(s)
Anopheles/physiology , Ecosystem , Oviposition/physiology , Poaceae/physiology , Soil , Animals , Color , Female , Kenya
SELECTION OF CITATIONS
SEARCH DETAIL
...