Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 42(2): 1079-1087, 2024.
Article in English | MEDLINE | ID: mdl-37042960

ABSTRACT

Terpenoids from the chaga mushroom have been identified as potential antiviral agents against SARS-CoV-2. This is because it can firmly bind to the viral spike receptor binding domain (RBD) and the auxiliary host cell receptor glucose-regulated protein 78 (GRP78). The current work examines the association of the chaga mushroom terpenoids with the RBD of various SARS-CoV-2 variants, including alpha, beta, gamma, delta, and omicron. This association was compared to the SARS-CoV-2 wild-type (WT) RBD using molecular docking analysis and molecular dynamics modeling. The outcomes demonstrated that the mutant RBDs, which had marginally greater average binding affinities (better binding) than the WT, were successfully inhibited by the chaga mushroom terpenoids. The results suggest that the chaga mushroom can be effective against various SARS-CoV-2 variants by targeting both the host-cell surface receptor GRP78 and the viral spike RBD.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Inonotus , Humans , Endoplasmic Reticulum Chaperone BiP , Molecular Docking Simulation , SARS-CoV-2 , Glucose
2.
Comput Biol Med ; 164: 107363, 2023 09.
Article in English | MEDLINE | ID: mdl-37595520

ABSTRACT

Gold nanoparticles (Au-NPs) have been used for a long time to target cancer cells. Different modalities have been suggested to utilize Au-NPs in cancer patients. We construct both normal and cancer cell membranes to simulate the Au-NP entry to understand better how it can penetrate the cancer cell membrane. We use molecular dynamics simulation (MDS) on both normal and cancer cell membrane models for 150 ns. At the same time, we prepared the Au-NP of spherical shape (16 nm radius) capped with citrate using MDS for 100 ns. Finally, we added the Au-NP close to the membranes and moved it using 1000 kJ mol-1 nm-1 force constant during the 7.7 ns MDS run. We analyzed the membranes in the presence and absence of the Au-NP and compared normal and cancer membranes. The results show that normal cell membranes have higher stability than cancer membranes. Additionally, Au-NP forms pore in the membranes that facilitate water and ions entry during the movement inside the lipid bilayer region. These pores are responsible for the enhanced response of Au-NP-loaded chemotherapeutic agents in cancer treatment.


Subject(s)
Metal Nanoparticles , Neoplasms , Humans , Gold , Cell Membrane , Molecular Dynamics Simulation
3.
Sci Rep ; 13(1): 2749, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797452

ABSTRACT

Both gallic and citrate are well-established antioxidants that show promise as new selective anti-cancer drugs. Gold nanoparticles (AuNPs) as well can be developed as flexible and nontoxic nano-carriers for anti-cancer drugs. This article evaluating the efficiency and biocompatibility of gallic acid and citrate capping gold nanoparticles to be used as anti-cancer drug. The biosafety and therapeutic efficiency of prepared nano-formulations were tested on Hela and normal BHK cell line. Gold nanospheres coated with citrate and gallate were synthesized via wet chemical reduction method. The prepared nano-formulations, citrate and gallate coated gold nanospheres (Cit-AuNPs and Ga-AuNPs), were characterized with respect to their morphology, FTIR spectra, and physical properties. In addition, to assess their cytotoxicity, cell cycle arrest and flow cytometry to measure biological response were performed. Cit-Au NPs and Ga-Au NPs were shown to significantly reduce the viability of Hela cancer cells. Both G0/G cell cycle arrest and comet assay results showed that genotoxic effect was induced in Hela cells by Cit-Au NPs and Ga-Au NPs. The results of this study showed that Cit-Au NPs and Ga-AuNPs inhibit the growth of metastatic cervical cancer cells, which could have therapeutic implications.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Nanospheres , Humans , Citric Acid/chemistry , HeLa Cells , Gold/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Citrates , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
4.
Molecules ; 26(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770863

ABSTRACT

A novel human coronavirus prompted considerable worry at the end of the year 2019. Now, it represents a significant global health and economic burden. The newly emerged coronavirus disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the primary reason for the COVID-19 global pandemic. According to recent global figures, COVID-19 has caused approximately 243.3 million illnesses and 4.9 million deaths. Several human cell receptors are involved in the virus identification of the host cells and entering them. Hence, understanding how the virus binds to host-cell receptors is crucial for developing antiviral treatments and vaccines. The current work aimed to determine the multiple host-cell receptors that bind with SARS-CoV-2 and other human coronaviruses for the purpose of cell entry. Extensive research is needed using neutralizing antibodies, natural chemicals, and therapeutic peptides to target those host-cell receptors in extremely susceptible individuals. More research is needed to map SARS-CoV-2 cell entry pathways in order to identify potential viral inhibitors.


Subject(s)
Coronavirus/metabolism , Host Microbial Interactions/physiology , Receptors, Coronavirus/metabolism , Antibodies, Neutralizing , Antiviral Agents/pharmacology , COVID-19 , Coronavirus/pathogenicity , Humans , Receptors, Coronavirus/physiology , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
5.
Adv Exp Med Biol ; 1318: 169-178, 2021.
Article in English | MEDLINE | ID: mdl-33973178

ABSTRACT

The present century will undoubtedly be marked with the COVID-19 global health crisis. It is not time yet to talk about the total number of deaths and hospitalizations, as they are enormously growing daily. Understanding the nature of COVID-19-induced pneumonia is vital in order to deal with the associated health complications. Cell stress is an established mechanism known to be associated with infection and cancer. Different proteins crucial for cellular response to stress are reported to be a possible target to stop the infection and to reduce the chemo-resistance in cancer. Heat shock protein (HSP) families of chaperones play an essential role in cells both in normal state and under stress. The upregulation of HSP5A, also termed GRP78 or Bip, is reported in different viral infections. This chapter introduces the current knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused the COVID-19 pandemic, and cell stress aimed at defining possible strategies to combat the COVID-19 pandemic.


Subject(s)
COVID-19 , Cell Physiological Phenomena , Neoplasms , Stress, Physiological , Endoplasmic Reticulum Chaperone BiP , Global Health , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL