Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Abdom Radiol (NY) ; 48(7): 2302-2310, 2023 07.
Article in English | MEDLINE | ID: mdl-37055586

ABSTRACT

PURPOSE: To investigate the intra-examination agreement between multi-echo gradient echo (MEGE) and confounder-corrected chemical shift-encoded (CSE) sequences for liver T2*/R2* estimations in a wide range of T2*/R2* and proton density fat fraction (PDFF) values. Exploratorily, to search for the T2*/R2* value where the agreement line breaks and examine differences between regions of low and high agreement. METHODS: Consecutive patients at risk for liver iron overload who underwent MEGE and CSE sequences within the same exam at 1.5 T were retrospectively selected. Regions of interest were drawn in the right and one in the left liver lobes on post-processed images for R2*(sec-1) and PDFF (%) estimation. Agreement between MEGE-R2* and CSE-R2* was evaluated using intra-class correlation coefficient (ICC) and Bland-Altman analysis. 95% confidence intervals (CI) were computed. Segment-and-regression analysis was performed to find the point where the agreement between sequences is interrupted. Regions of low and high agreement were examined using tree-based partitioning analyses. RESULTS: 49 patients were included. Mean MEGE-R2* was 94.2 s-1 (range: 31.0-737.1) and mean CSE-R2* 87.7 (29.7-748.1). Mean CSE-PDFF was 9.12% (0.1-43.3). Agreement was strong for R2* estimations (ICC: 0.992,95%CI 0.987,0.996), but the relation was nonlinear and possibly heteroskedastic. Lower agreement occurred when MEGE-R2* > 235 s-1, with MEGE-R2* values consistently lower than CSE-R2*. Higher agreement was observed when PDFF < 14%. CONCLUSION: MEGE-R2* and CSE-R2* strongly agree, though at higher iron content, MEGE-R2* is consistently lower than CSE-R2*. In this preliminary dataset, a breaking point for agreement was found at R2* > 235. Lower agreement was observed in patients with moderate to severe liver steatosis.


Subject(s)
Iron , Protons , Humans , Iron/analysis , Retrospective Studies , Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Liver/diagnostic imaging , Biomarkers
2.
Semin Ultrasound CT MR ; 43(4): 364-370, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35738822

ABSTRACT

Liver Iron content is best correlated to total body iron stores and is thus the organ of choice for evaluation in iron overload diseases. Liver biopsy was the historic standard for iron evaluation, but the evaluation is localized, comes with increased risks due to its invasiveness, and is costly. MRI is now widely used for liver iron evaluation. The superparamagnetic properties of iron cause a disturbance in magnetic resonance imaging, which can be evaluated with various techniques. These include signal intensity ratio (SIR), T2 relaxometry, T2* relaxometry, and Dixon-based solutions. Each of the methods has its own advantages and disadvantages, and factors such as availability, ease of use, accuracy, reproducibility, and cost can all play a role in the ultimate technique used for liver iron quantification. Quantitative susceptibility mapping, and ultrashort TE sequences are promising supplemental methods, but are primarily used as research sequences. These may become more clinically accepted in the near future. Dual energy CT is also being explored as an alternative but is still in the nascent stages. Overall, accurate liver iron concentration is feasible with the current tools available at most MR imaging centers and is highly valuable for evaluation of iron overload diseases.


Subject(s)
Iron Overload , Iron , Humans , Iron Overload/diagnostic imaging , Iron Overload/etiology , Iron Overload/pathology , Liver/diagnostic imaging , Magnetic Resonance Imaging/methods , Reproducibility of Results
3.
J Comput Assist Tomogr ; 45(6): 877-887, 2021.
Article in English | MEDLINE | ID: mdl-34469903

ABSTRACT

OBJECTIVE: To investigate in an anthropomorphic phantom study the accuracy of dual-energy computed tomography (DECT) techniques for fat quantification in comparison with magnetic resonance (MR) proton density fat fraction (PDFF) and single-energy computed tomography (SECT), using known fat content as reference standard. METHODS: Between August 2018 and November 2020, organic material-based cylinders, composed of mixtures of lean and fat tissues mimics, iodine, and iron, were constructed to simulate varying fat content levels (0%, 10%, 15%, 25%, 50%, 75%, and 100%) in a parenchymal organ and were embedded into an anthropomorphic phantom simulating 3 patient sizes (circumference, 91, 126, and 161 cm). The phantom was imaged with multiecho MR, DECT, and SECT. Magnetic resonance PDFF, DECT fat fraction, and computed tomography (CT) numbers (SECT polychromatic and DECT monochromatic data, virtual unenhanced images) were estimated. Performances of MR PDFF and CT techniques to detect differences in fat content were measured using the area under the curve (AUC). Noninferiority of each CT technique relative to MR PDFF was tested using a noninferiority margin of -0.1. RESULTS: MR PDFF, DECT 140 keV monochromatic data, and fat fraction most closely correlated with known fat content (R2 = 0.98, 0.98, and 0.96, respectively). Unlike SECT and all other DECT techniques, DECT fat fraction was not affected by presence of iodine (mean difference, 0.3%; 95% confidence interval [CI], -0.9% to 1.5%). Dual-energy computed tomography fat fraction showed noninferiority to MR PDFF in detecting differences of 5% in fat content in medium-sized phantoms (ΔAUC, -0.05; 95% CI, -0.08 to -0.01), and 7% in large (ΔAUC, -0.04; 95% CI, -0.0 to 0.00) or extralarge sized phantoms (ΔAUC, -0.02; 95% CI, -0.07 to 0.00). CONCLUSIONS: Dual-energy computed tomography fat fraction shows linear correlation with true fat content in the range up to 50% fat fraction. Dual-energy computed tomography fat fraction has comparable estimation error and shows noninferiority to MR PDFF in detecting small differences in fat content across different body sizes.


Subject(s)
Adipose Tissue/anatomy & histology , Magnetic Resonance Imaging/methods , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Reproducibility of Results
4.
Int J Cardiovasc Imaging ; 37(5): 1699-1707, 2021 May.
Article in English | MEDLINE | ID: mdl-33620607

ABSTRACT

Little has been reported on the left ventricular myocardial distension (bounce) and its utility to assess cardiac function. The purpose of this study is to determine whether myocardial bounce at end diastole is reproducibly visualized by blinded observers and to determine whether it corresponds to systolic and diastolic function. 144 Consecutive cardiac MR exams between September and December 2017 were selected for analysis. The bounce was graded by two blinded observers, and the change in LV diameter pre and post bounce was measured. The bounce was defined as the rapid change in LV volume that occurs at the end of diastole during atrial contraction just prior to systolic ejection. Inter-reader agreement was summarized using Cohen's kappa. Spearman's rank correlation coefficient was used to evaluate associations between bounce grade and cardiac physiology parameters. Overall agreement was good with unweighted kappa = 0.69 (95% CI 0.60-0.79). Bounce grade was significantly correlated with the average change in LV diameter before and after the bounce (Spearman's rho = 0.76, p < 0.001). Median diameter changes were 0.0, 1.9, and 4.2 mm in grades 0 (no bounce), 1 (small bounce), and 2 (normal), respectively. The bounce lasted 8 to 12 ms in all patients. Bounce grade was significantly correlated with LV EF (Spearman's rho = 0.43, p < 0.001). Median EF was 44%, 51%, and 58% in grades 0, 1, and 2, respectively. Of the 87 patients who had E/A ratio or E/e' ratio measured, bounce grade was also significantly correlated with E/A ratio (r = - 0.24, p = 0.034) and E/e' ratio (r = - 0.24, p = 0.022), with lower grades having higher ratio values on average (Table 4). Of the 15 patients with a bounce grade of 0 by one or both readers and EF ≥ 50%, 8 had E/A ratio measurements and 7 had E/e' ratio measurements. The E/A ratio values ranged from 1 to 2.7 (median 1.5). The E/e' ratio values ranged from 4.8 to 9.6 (median 7.7). The simple observation of a normal myocardial bounce during cine loop review of cardiac MR exams was predictive of normal diastolic and systolic cardiac function. Lack of myocardial bounce was highly associated with both systolic and diastolic dysfunction. The subpopulation of patients with loss of myocardial bounce and normal ejection fraction appear to represent patients with early diastolic dysfunction. Further studies with more diastolic dysfunction MRs are needed to examine this relationship. This study suggests changes to the myocardial bounce seen on cardiac MR may be a simple useful tool for detecting cardiac dysfunction. This study is not to replace, but rather aid the clinical diagnosis and management of both diastolic and systolic dysfunction.


Subject(s)
Ventricular Dysfunction, Left , Ventricular Function, Left , Diastole , Humans , Predictive Value of Tests , Stroke Volume , Ventricular Dysfunction, Left/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...