Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339100

ABSTRACT

The global exploration of evolutionary trends in groupers, based on mitogenomes, is currently underway. This research extensively investigates the structure of and variations in Cephalopholis species mitogenomes, along with their phylogenetic relationships, focusing specifically on Cephalopholis taeniops from the Eastern Atlantic Ocean. The generated mitogenome spans 16,572 base pairs and exhibits a gene order analogous to that of the ancestral teleost's, featuring 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an AT-rich control region. The mitogenome of C. taeniops displays an AT bias (54.99%), aligning with related species. The majority of PCGs in the mitogenome initiate with the start codon ATG, with the exceptions being COI (GTG) and atp6 (TTG). The relative synonymous codon usage analysis revealed the maximum abundance of leucine, proline, serine, and threonine. The nonsynonymous/synonymous ratios were <1, which indicates a strong negative selection among all PCGs of the Cephalopholis species. In C. taeniops, the prevalent transfer RNAs display conventional cloverleaf secondary structures, except for tRNA-serine (GCT), which lacks a dihydrouracil (DHU) stem. A comparative examination of conserved domains and sequence blocks across various Cephalopholis species indicates noteworthy variations in length and nucleotide diversity. Maximum likelihood, neighbor-joining, and Bayesian phylogenetic analyses, employing the concatenated PCGs and a combination of PCGs + rRNAs, distinctly separate all Cephalopholis species, including C. taeniops. Overall, these findings deepen our understanding of evolutionary relationships among serranid groupers, emphasizing the significance of structural considerations in mitogenomic analyses.


Subject(s)
Bass , Genome, Mitochondrial , Animals , Phylogeny , Bass/genetics , Bayes Theorem , Base Composition , RNA, Transfer/genetics , RNA, Ribosomal/genetics , Serine/genetics
2.
Life (Basel) ; 13(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36836839

ABSTRACT

The mitogenome of an endemic catfish Clarias camerunensis was determined from the Cameroon water. This circular mitogenome was 16,511 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a single AT-rich control region. The heavy strand accommodates 28 genes, whereas the light strand is constituted by ND6 and eight transfer RNA (tRNA) genes. The C. camerunensis mitochondrial genome is AT biased (56.89%), as showcased in other Clarias species. The comparative analyses revealed that most of the Clarias species have 6 overlapping and 11 intergenic spacer regions. Most of the PCGs were initiated and terminated with the ATG start codon and TAA stop codon, respectively. The tRNAs of C. camerunensis folded into the distinctive cloverleaf secondary structure, except trnS1. The placement of the conserved domains in the control region was similar in all the Clarias species with highly variable nucleotides in CSB-I. Both maximum likelihood and Bayesian-based matrilineal phylogenies distinctly separated all Clarias species into five clades on the basis of their known distributions (South China, Sundaland, Indochina, India, and Africa). The TimeTree analysis revealed that the two major clades (Indo-Africa and Asia) of Clarias species might have diverged during the Paleogene (≈28.66 MYA). Our findings revealed the separation of Indian species (C. dussumieri) and African species (C. camerunensis and Clarias gariepinus) took place during the Paleogene, as well as the South Chinese species (Clarias fuscus) and Sundaland species (Clarias batrachus) splits from the Indochinese species (Clarias macrocephalus) during the Neogene through independent colonization. This pattern of biotic relationships highlights the influence of topography and geological events in determining the evolutionary history of Clarias species. The enrichment of mitogenomic data and multiple nuclear loci from their native range or type locality will confirm the true diversification of Clarias species in African and Asian countries.

SELECTION OF CITATIONS
SEARCH DETAIL
...