Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 11(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374757

ABSTRACT

We investigated the adsorption of lead (Pb2+) and nickel (Ni2+) ions by electrospun membranes of polyacrylonitrile (PAN) nanofiber activated with NaHCO3 (PANmod). Analysis by Fourier-transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX) validated the functionalization of PAN nanofibers with NaHCO3, and the successful agglomeration of Pb2+ and Ni2+ onto PANmod. After a rapid uptake of the heavy metal ions (15 min), the equilibrium contact time was attained (60 min) following a linear increase of both adsorption capacity and removal efficiency. PANmod showed a better affinity for Ni2+ than Pb2+. The adsorption on PANmod was best described by the pseudo-second-order kinetic model for both studied models, supporting chemisorption. By varying the solution pH from 2.0 to 9.0, we found that the adsorption capacity followed an increasing trend, reaching a maximum at the pH of 7.0. Despite increasing adsorption capacities, the removal efficiency of both heavy metal ions exhibited a decreasing trend with increase in initial concentrations. The amount of PANmod directly affects the removal efficiency, with 0.7 and 0.2 g being the optimum dose for maximum uptake of Pb2+ and Ni2+, respectively. The Langmuir model fitted well the Pb2+ adsorption data suggesting monolayer adsorption, and the Freundlich model perfectly fitted the Ni2+ adsorption data, indicating heterogeneous adsorption. The estimated values of the mean free energy of adsorption in the D-R isotherm indicated a physical adsorption of both heavy metal ions into the surface of the PANmod.

2.
J Hazard Mater ; 311: 1-10, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-26950611

ABSTRACT

Experiments were conducted to investigate the reductive dechlorination of tetrachloroethylene (PCE) by nano-Mackinawite (nFeS) with cyano-cobalamin (Cbl(III)) in cement slurries. Almost complete degradation of PCE by nFeS-Cbl(III) was observed in cement slurries in 5 h and its degradation kinetics (k(obs-PCE)=0.57 h(-1)) was 6-times faster than that of nFeS-Cbl(III) without the cement slurries. PCE was finally transformed to non-chlorinated organic compounds such as ethylene, acetylene, and C3-C4 hydrocarbons by nFeS-Cbl(III) in cement slurries. X-ray photoelectron spectroscopy and PCE degradation by cement components (SiO2, Al2O3, and CaO) revealed that both the reduced Co species in Cbl(III) and the presence of Ca in cement played an important role for the enhanced reductive dechlorination of PCE. The increase in the concentration of Cbl(III) (0.005-0.1 mM), cement ratio (0.05-0.2), and suspension pH (11.5-13.5) accelerated the PCE degradation kinetics by providing more favorable environments for the production of reactive Ca species and reduction of Co species. We also observed that the degradation efficiency of PCE by nFeS-Cbl(III)-cement lasted even at high concentration of PCE. The experimental results obtained from this study could provide fundamental knowledge of redox interactions among nFeS, Cbl(III), and cement, which could significantly enhance reductive dechlorination of chlorinated organics in contaminated natural and engineered environments.

3.
PLoS One ; 11(2): e0149490, 2016.
Article in English | MEDLINE | ID: mdl-26901866

ABSTRACT

Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the "Extended Hollo-Bolt" (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach.


Subject(s)
Construction Materials , Steel
4.
Water Sci Technol ; 60(2): 419-31, 2009.
Article in English | MEDLINE | ID: mdl-19633384

ABSTRACT

Efficiency of solar disinfection (SODIS) was evaluated for the potability of rainwater in view of the increasing water and energy crises especially in developing countries. Rainwater samples were collected from an underground storage tank in 2 L polyethylene terephthalate (PET) bottles and SODIS efficiency was evaluated at different weather conditions. For optimizing SODIS, PET bottles with different backing surfaces to enhance the optical and thermal effects of SODIS were used and different physicochemical parameters were selected and evaluated along with microbial re-growth observations and calculating microbial decay constants. Total and fecal coliforms were used along with Escherichia Coli and Heterotrophic Plate Counts (HPC) as basic microbial and indicator organisms of water quality. For irradiance less than 600 W/m(2), reflective type PET bottles were best types while for radiations greater than 700 W/m(2), absorptive type PET bottles offered best solution due to the synergistic effects of both thermal and UV radiations. Microbial inactivation did not improve significantly by changing the initial pH and turbidity values but optimum SODIS efficiency is achieved for rainwater with acidic pH and low initial turbidity values by keeping air-spaced PET bottles in undisturbed conditions. Microbial re-growth occurred after one day only at higher turbidity values and with basic pH values. First-order reaction rate constant was in accordance with recent findings for TC but contradicted with previous researches for E. coli. No microbial parameter met drinking water guidelines even under strong experimental weather conditions rendering SODIS ineffective for complete disinfection and hence needed more exposure time or stronger sunlight radiations. With maximum possible storage of rainwater, however, and by using some means for accelerating SODIS process, rainwater can be disinfected and used for potable purposes.


Subject(s)
Rain , Sunlight , Water Purification/instrumentation , Water Purification/methods , Water/chemistry , Developing Countries , Disinfection , Equipment Design , Escherichia coli/metabolism , Facility Design and Construction , Hydrogen-Ion Concentration , Polyethylene Terephthalates/chemistry , Temperature , Ultraviolet Rays , Water Microbiology , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...