Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nanoscale ; 11(33): 15622-15632, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31407757

ABSTRACT

We have demonstrated atomically thin, quantum capacitance-limited, field-effect transistors (FETs) that enable the detection of pH changes with 75-fold higher sensitivity (≈4.4 V per pH) over the Nernst value of 59 mV per pH at room temperature when used as a biosensor. The transistors, which are fabricated from monolayer films of MoS2, use a room temperature ionic liquid (RTIL) in place of a conventional oxide gate dielectric and exhibit very low intrinsic noise resulting in a pH resolution of 92 × 10-6 at 10 Hz. This high device performance, which is a function of the structure of our device, is achieved by remotely connecting the gate to a pH sensing element allowing the FETs to be reused. Because pH measurements are fundamentally important in biotechnology, the increased resolution demonstrated here will benefit numerous applications ranging from pharmaceutical manufacturing to clinical diagnostics. As an example, we experimentally quantified the function of the kinase Cdk5, an enzyme implicated in Alzheimer's disease, at concentrations that are 5-fold lower than physiological values, and with sufficient time-resolution to allow the estimation of both steady-state and kinetic parameters in a single experiment. The high sensitivity, increased resolution, and fast turnaround time of the measurements will allow the development of early diagnostic tools and novel therapeutics to detect and treat neurological conditions years before currently possible.


Subject(s)
Biosensing Techniques/methods , Cyclin-Dependent Kinase 5/analysis , Disulfides/chemistry , Molybdenum/chemistry , Alzheimer Disease/diagnosis , Cyclin-Dependent Kinase 5/metabolism , Electric Capacitance , Humans , Hydrogen-Ion Concentration , Ionic Liquids/chemistry , Kinetics , Limit of Detection , Signal-To-Noise Ratio , Temperature , Transistors, Electronic
2.
Hum Mol Genet ; 28(19): 3175-3187, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31189016

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor nerve cells in the brain and the spinal cord. Etiological mechanisms underlying the disease remain poorly understood; recent studies suggest that deregulation of p25/Cyclin-dependent kinase 5 (Cdk5) activity leads to the hyperphosphorylation of Tau and neurofilament (NF) proteins in ALS transgenic mouse model (SOD1G37R). A Cdk5 involvement in motor neuron degeneration is supported by analysis of three SOD1G37R mouse lines exhibiting perikaryal inclusions of NF proteins and hyperphosphorylation of Tau. Here, we tested the hypothesis that inhibition of Cdk5/p25 hyperactivation in vivo is a neuroprotective factor during ALS pathogenesis by crossing the new transgenic mouse line that overexpresses Cdk5 inhibitory peptide (CIP) in motor neurons with the SOD1G37R, ALS mouse model (TriTg mouse line). The overexpression of CIP in the motor neurons significantly improves motor deficits, extends survival and delays pathology in brain and spinal cord of TriTg mice. In addition, overexpression of CIP in motor neurons significantly delays neuroinflammatory responses in TriTg mouse. Taken together, these data suggest that CIP may serve as a novel therapeutic agent for the treatment of neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Motor Neurons/cytology , Nerve Tissue Proteins/genetics , Peptide Fragments/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Motor Neurons/metabolism , Phenotype , Phosphorylation , Superoxide Dismutase-1/genetics , tau Proteins/metabolism
3.
Sci Rep ; 8(1): 1177, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352128

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and this interaction was blocked by TFP5, an inhibitor that prevents activation of Cdk5. In vitro peptide-based kinase assay revealed that four of six TRPA1 Cdk5 consensus sites acted as substrates for Cdk5, and modeling of the ankyrin repeats disclosed that phosphorylation would occur at characteristic pockets within the (T/S)PLH motifs. Calcium imaging of trigeminal ganglion neurons from genetically engineered mice overexpressing or lacking the Cdk5 activator p35 displayed increased or decreased responsiveness, respectively, to stimulation with the TRPA1 agonist allylisothiocyanate (AITC). AITC-induced chemo-nociceptive behavior was also heightened in vivo in mice overexpressing p35 while being reduced in p35 knockout mice. Our findings demonstrate that TRPA1 is a substrate of Cdk5 and that Cdk5 activity is also able to modulate TRPA1 agonist-induced calcium influx and chemo-nociceptive behavioral responses.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Nociception , TRPA1 Cation Channel/metabolism , Animals , Calcium/metabolism , Computational Biology/methods , Cyclin-Dependent Kinase 5/chemistry , Cyclin-Dependent Kinase 5/genetics , Humans , Mice , Mice, Knockout , Models, Molecular , Molecular Imaging , Neurons/metabolism , Phosphorylation , Protein Conformation , Substrate Specificity , TRPA1 Cation Channel/chemistry , TRPA1 Cation Channel/genetics , Trigeminal Ganglion/metabolism
4.
Mol Pain ; 13: 1744806917737205, 2017.
Article in English | MEDLINE | ID: mdl-28969475

ABSTRACT

Abstract: Cdk5 is a key neuronal kinase necessary for proper brain development, which has recently been implicated in modulating nociception. Conditional deletion of Cdk5 in pain-sensing neurons attenuates pain responses to heat in both the periphery and orofacial regions. Cdk5 activity is regulated by binding to the activators p35 and p39, both of which possess a cyclin box. Our previous examination of the nociceptive role of the well-characterized Cdk5 activator p35 using mice that either lack or overexpress this regulatory subunit demonstrated that Cdk5/p35 activity affects mechanical, chemical, and thermal nociception. In contrast, the nociceptive role of Cdk5's other less-studied activator p39 is unknown. Here, we report that the knockout of p39 in mice did not affect orofacial and peripheral nociception. The lack of any algesic response to nociceptive stimuli in the p39 knockout mice contrasts with the hypoalgesic effects that result from the deletion of p35. Our data demonstrate different and nonoverlapping roles of Cdk5 activators in the regulation of orofacial as well as peripheral nociception with a crucial role for Cdk5/p35 in pain signaling.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Cytoskeletal Proteins/deficiency , Facial Pain/metabolism , Lipid-Linked Proteins/deficiency , Nerve Tissue Proteins/metabolism , Animals , Cyclin-Dependent Kinase 5/genetics , Facial Pain/genetics , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Pain Perception/physiology , Phosphotransferases/metabolism , Sensation/physiology , Signal Transduction/physiology
5.
J Alzheimers Dis ; 56(1): 335-349, 2017.
Article in English | MEDLINE | ID: mdl-28085018

ABSTRACT

It has been reported that cyclin-dependent kinase 5 (cdk5), a critical neuronal kinase, is hyperactivated in Alzheimer's disease (AD) and may be, in part, responsible for the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs). It has been proposed by several laboratories that hyperactive cdk5 results from the overexpression of p25 (a truncated fragment of p35, the normal cdk5 regulator), which, when complexed to cdk5, induces hyperactivity, hyperphosphorylated tau/NFTs, amyloid-ß plaques, and neuronal death. It has previously been shown that intraperitoneal (i.p.) injections of a modified truncated 24-aa peptide (TFP5), derived from the cdk5 activator p35, penetrated the blood-brain barrier and significantly rescued AD-like pathology in 5XFAD model mice. The principal pathology in the 5XFAD mutant, however, is extensive amyloid plaques; hence, as a proof of concept, we believe it is essential to demonstrate the peptide's efficacy in a mouse model expressing high levels of p25, such as the inducible CK-p25Tg model mouse that overexpresses p25 in CamKII positive neurons. Using a modified TFP5 treatment, here we show that peptide i.p. injections in these mice decrease cdk5 hyperactivity, tau, neurofilament-M/H hyperphosphorylation, and restore synaptic function and behavior (i.e., spatial working memory, motor deficit using Rota-rod). It is noteworthy that TFP5 does not inhibit endogenous cdk5/p35 activity, nor other cdks in vivo suggesting it might have no toxic side effects, and may serve as an excellent therapeutic candidate for neurodegenerative disorders expressing abnormally high brain levels of p25 and hyperactive cdk5.


Subject(s)
Alzheimer Disease/drug therapy , Long-Term Potentiation/drug effects , Peptides/pharmacology , Peptides/therapeutic use , Phosphotransferases/metabolism , Alzheimer Disease/complications , Alzheimer Disease/genetics , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Disease Models, Animal , Doxycycline/administration & dosage , Excitatory Amino Acid Agonists/pharmacology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Female , Hippocampus/drug effects , Hippocampus/physiology , Hyperkinesis/drug therapy , Hyperkinesis/etiology , Long-Term Potentiation/genetics , Male , Maze Learning/drug effects , Mice , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , N-Methylaspartate/pharmacology , Phosphotransferases/genetics , tau Proteins/metabolism
6.
Mol Biol Cell ; 27(21): 3221-3232, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27630261

ABSTRACT

In a series of studies, we have identified TFP5, a truncated fragment of p35, the Cdk5 kinase regulatory protein, which inhibits Cdk5/p35 and the hyperactive Cdk5/p25 activities in test tube experiments. In cortical neurons, however, and in vivo in Alzheimer's disease (AD) model mice, the peptide specifically inhibits the Cdk5/p25 complex and not the endogenous Cdk5/p35. To account for the selective inhibition of Cdk5/p25 activity, we propose that the "p10" N-terminal domain of p35, absent in p25, spares Cdk5/p35 because p10 binds to macromolecules (e.g., tubulin and actin) as a membrane-bound multimeric complex that favors p35 binding to Cdk5 and catalysis. To test this hypothesis, we focused on Munc 18, a key synapse-associated neuronal protein, one of many proteins copurifying with Cdk5/p35 in membrane-bound multimeric complexes. Here we show that, in vitro, the addition of p67 protects Cdk5/p35 and has no effect on Cdk5/p25 activity in the presence of TFP5. In cortical neurons transfected with p67siRNA, we also show that TFP5 inhibits Cdk5/p35 activity, whereas in the presence of p67 the activity is protected. It does so without affecting any other kinases of the Cdk family of cyclin kinases. This difference may be of significant therapeutic value because the accumulation of the deregulated, hyperactive Cdk5/p25 complex in human brains has been implicated in pathology of AD and other neurodegenerative disorders.


Subject(s)
Munc18 Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/physiology , Animals , Brain/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinases/metabolism , Humans , Mice , Neurodegenerative Diseases , Neurons/metabolism , Peptide Fragments/metabolism , Peptides/metabolism , Phosphorylation , Protein Binding , Protein Domains , Tubulin/metabolism
7.
PLoS One ; 11(8): e0160252, 2016.
Article in English | MEDLINE | ID: mdl-27479491

ABSTRACT

Podocytes are terminally differentiated glomerular epithelial cells. Podocyte loss has been found in many renal diseases. Cdk5 is a cyclin-dependent protein kinase which is predominantly regulated by p35. To study the role of Cdk5/p35 in podocyte survival, we first applied western blotting (WB) analysis to confirm the time-course expression of Cdk5 and p35 during kidney development and in cultured immortalized mouse podocytes. We also demonstrated that p35 plays an important role in promoting podocyte differentiation by overexpression of p35 in podocytes. To deregulate the expression of Cdk5 or p35 in mouse podocytes, we used RNAi and analyzed cell function and apoptosis assaying for podocyte specific marker Wilms Tumor 1 (WT1) and cleaved caspase 3, respectively. We also counted viable cells using cell counting kit-8. We found that depletion of Cdk5 causes decreased expression of WT1 and apoptosis. It is noteworthy, however, that downregulation of p35 reduced Cdk5 activity, but had no effect on cleaved caspase 3 expression. It did, however, reduce expression of WT1, a transcription factor, and produced podocyte dysmorphism. On the other hand increased apoptosis could be detected in p35-deregulated podocytes using the TUNEL analysis and immunofluorescent staining with cleaved caspase3 antibody. Viability of podocytes was decreased in both Cdk5 and p35 knockdown cells. Knocking down Cdk5 or p35 gene by RNAi does not affect the cycline I expression, another Cdk5 activator in podocyes. We conclude that Cdk5 and p35 play a crucial role in maintaining podocyte differentiation and survival, and suggest these proteins as targets for therapeutic intervention in podocyte-damaged kidney diseases.


Subject(s)
Apoptosis/genetics , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Podocytes/pathology , Animals , Caspase 3/metabolism , Cell Differentiation , Cells, Cultured , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Female , Gene Expression Regulation/genetics , Gene Knockdown Techniques , Kidney Glomerulus/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/antagonists & inhibitors , Podocytes/cytology , Podocytes/metabolism , Pregnancy , RNA Interference , RNA, Small Interfering/metabolism , Repressor Proteins/metabolism , Time Factors , WT1 Proteins
8.
J Alzheimers Dis ; 54(2): 525-33, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27567857

ABSTRACT

Cyclin-dependent kinase 5 (CDK5) is a multifunctional serine/threonine kinase that regulates a large number of neuronal processes essential for nervous system development and function with its activator p35 CDK5R1. Upon neuronal insults, p35 is proteolyzed and cleaved to p25 producing deregulation and hyperactivation of CDK5 (CDK5/p25), implicated in tau hyperphosphorylation, a pathology in some neurodegenerative diseases. A truncated, 24 amino acid peptide, p5, derived from p35 inhibits the deregulated CDK5 phosphotransferase activity and ameliorates Alzheimer's disease (AD) phenotypes in AD model mice. In the present study, we have screened a diverse panel of 70 human protein kinases for their sensitivities to p5, and a subset of these to p35. At least 16 of the tested protein kinases exhibited IC50 values that were 250 µM or less, with CAMK4, ZAP70, SGK1, and PIM1 showing greater sensitivity to inhibition by p5 than CDK5/p35 and CDK5/p25. In contrast, the p5 peptide modestly activated LKB1 and GSK3ß. A sub set of kinases screened against p35 showed that activity of CAMK4 in the absence of calcium and calmodulin was also markedly inhibited by p35. The Cyclin Y-dependent kinases PFTK1 (CDK14) and PCTK1 (CDK16) were activated by p35 at least 10-fold in the absence of Cyclin Y and by approximately 50% in its presence. These findings provide additional insights into the mechanisms of action for p5 and p35 in the regulation of protein phosphorylation in the nervous system.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Gene Expression Profiling/methods , Nerve Tissue Proteins/metabolism , Peptide Fragments/metabolism , Amino Acid Sequence , Cyclin-Dependent Kinase 5/genetics , Humans , Nerve Tissue Proteins/genetics , Peptide Fragments/genetics , Protein Kinases/genetics , Protein Kinases/metabolism
9.
J Alzheimers Dis ; 48(4): 1009-17, 2015.
Article in English | MEDLINE | ID: mdl-26444778

ABSTRACT

Besides the hallmark pathology of amyloid plaques and neurofibrillary tangles, it is well documented that cyclin-dependent kinase 5 (CDK5), a critical neuronal protein kinase in nervous system development, function, and survival, when deregulated and hyperactivated induces Alzheimer's disease (AD) and amyotrophic lateral sclerosis and Parkinson's disease-like phenotypes in mice. In a recent study, we demonstrated that p5, a small, truncated fragment of 24 amino acid residues derived from the CDK5 activator protein 35 (NCK5A, p35), selectively inhibited deregulated CDK5 hyperactivity and ameliorated AD phenotypes in model mice. In this study, we identified the most inhibitory elements in the p5 peptide fragment. Each amino acid residue in p5 was systematically replaced with its homologous residues that may still be able to functionally substitute. The effects of these p5 peptide analogs were studied on the phosphotransferase activities of CDK5/p35, CDK5/p25, ERK1, and GSK3ß. The mimetic p5 peptide (A/V substitution at the C-terminus of the peptide) in the sequence, KNAFYERALSIINLMTSKMVQINV (p5-MT) was the most effective inhibitor of CDK5 kinase activity of 79 tested mimetic peptides including the original p5 peptide, KEAFWDRCLSVINLMSSKMLQINA (p5-WT). Replacement of the residues in C-terminus end of the peptide affected CDK5 phosphotransferase activity most significantly. These peptides were strong inhibitors of CDK5, but not the related proline-directed kinases, ERK1 and GSK3ß.


Subject(s)
Cyclin-Dependent Kinase 5/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Peptide Fragments/metabolism , Amino Acid Sequence , Animals , Cyclin-Dependent Kinase 5/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Mimicry , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Radioligand Assay , Recombinant Proteins/metabolism , Sf9 Cells
10.
Mol Biol Cell ; 26(24): 4478-91, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26399293

ABSTRACT

Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer's disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 -hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson's disease.


Subject(s)
Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Peptide Fragments/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Amino Acid Sequence , Animals , Cyclin-Dependent Kinase 5/metabolism , Disease Models, Animal , Dopamine/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/pharmacology , Neurons/metabolism , Parkinson Disease/metabolism , Substantia Nigra
11.
J Alzheimers Dis ; 39(4): 899-909, 2014.
Article in English | MEDLINE | ID: mdl-24326517

ABSTRACT

Multiple lines of evidence link the incidence of diabetes to the development of Alzheimer's disease (AD). Patients with diabetes have a 50 to 75% increased risk of developing AD. Cyclin dependent kinase 5 (Cdk5) is a serine/threonine protein kinase, which forms active complexes with p35 or p39, found principally in neurons and in pancreatic ß cells. Recent studies suggest that Cdk5 hyperactivity is a possible link between neuropathology seen in AD and diabetes. Previously, we identified P5, a truncated 24-aa peptide derived from the Cdk5 activator p35, later modified as TFP5, so as to penetrate the blood-brain barrier after intraperitoneal injections in AD model mice. This treatment inhibited abnormal Cdk5 hyperactivity and significantly rescued AD pathology in these mice. The present study explores the potential of TFP5 peptide to rescue high glucose (HG)-mediated toxicity in rat embryonic cortical neurons. HG exposure leads to Cdk5-p25 hyperactivity and oxidative stress marked by increased reactive oxygen species production, and decreased glutathione levels and superoxide dismutase activity. It also induces hyperphosphorylation of tau, neuroinflammation as evident from the increased expression of inflammatory cytokines like TNF-α, IL-1ß, and IL-6, and apoptosis. Pretreatment of cortical neurons with TFP5 before HG exposure inhibited Cdk5-p25 hyperactivity and significantly attenuated oxidative stress by decreasing reactive oxygen species levels, while increasing superoxide dismutase activity and glutathione. Tau hyperphosphorylation, inflammation, and apoptosis induced by HG were also considerably reduced by pretreatment with TFP5. These results suggest that TFP5 peptide may be a novel candidate for type 2 diabetes therapy.


Subject(s)
Cerebral Cortex/metabolism , Cyclin-Dependent Kinase 5/chemistry , Glucose/toxicity , Neurons/metabolism , Peptide Fragments/physiology , Phosphotransferases/physiology , Amino Acid Sequence , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/enzymology , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Disease Models, Animal , Molecular Sequence Data , Neurons/enzymology , Phosphotransferases/chemistry , Rats
12.
Mol Pain ; 9: 66, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24359609

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 5 (Cdk5) is a unique member of the serine/threonine kinase family. This kinase plays an important role in neuronal development, and deregulation of its activity leads to neurodegenerative disorders. Cdk5 also serves an important function in the regulation of nociceptive signaling. Our previous studies revealed that the expression of Cdk5 and its activator, p35, is upregulated in nociceptive neurons during peripheral inflammation. The aim of the present study was to characterize the involvement of Cdk5 in orofacial pain. Since mechanical hyperalgesia is the distinctive sign of many orofacial pain conditions, we adapted an existing orofacial stimulation test to assess the behavioral responses to mechanical stimulation in the trigeminal region of the transgenic mice with either reduced or increased Cdk5 activity. RESULTS: Mice overexpressing or lacking p35, an activator of Cdk5, showed altered phenotype in response to noxious mechanical stimulation in the trigeminal area. Mice with increased Cdk5 activity displayed aversive behavior to mechanical stimulation as indicated by a significant decrease in reward licking events and licking time. The number of reward licking/facial contact events was significantly decreased in these mice as the mechanical intensity increased. By contrast, mice deficient in Cdk5 activity displayed mechanical hypoalgesia. CONCLUSIONS: Collectively, our findings demonstrate for the first time the important role of Cdk5 in orofacial mechanical nociception. Modulation of Cdk5 activity in primary sensory neurons makes it an attractive potential target for the development of novel analgesics that could be used to treat multiple orofacial pain conditions.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Hyperalgesia/enzymology , Animals , Cyclin-Dependent Kinase 5/genetics , Facial Pain/enzymology , Facial Pain/metabolism , Hyperalgesia/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Trigeminal Ganglion/enzymology , Trigeminal Ganglion/metabolism
13.
PLoS One ; 8(9): e63332, 2013.
Article in English | MEDLINE | ID: mdl-24039692

ABSTRACT

Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG) results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs), however was detectable in the long exposure in HG cells (24 hrs and 48 hrs). Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5) with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Glucose/physiology , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Insulin/metabolism , Nerve Tissue Proteins/pharmacology , Peptide Fragments/pharmacology , Animals , Apoptosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Enzyme Activation , Glucose/pharmacology , HEK293 Cells , Humans , Insulin Secretion , Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/metabolism , Mice , Transcriptional Activation
14.
J Neurovirol ; 19(5): 418-31, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23982957

ABSTRACT

Human immunodeficiency virus (HIV) infection-associated neurocognitive disorders is accompanied with brain atrophy. In these patients, impairment of adult neurogenesis and neurite outgrowth in the hippocampus may contribute to cognitive dysfunction. Although running exercises can enhance neurogenesis and normalize neurite outgrowth, the underlying molecular mechanisms are not well understood. The HIV envelope protein, gp120, has been shown to impair neurogenesis. Using a gp120 transgenic mouse model, we demonstrate that exercise stimulated neural progenitor cell (NPC) proliferation in the hippocampal dentate gyrus and increased the survival rate and generation of newborn cells. However, sustained exercise activity was necessary as the effects were reversed by detraining. Exercise also normalized dendritic outgrowth of neurons. Furthermore, it increased the expression of hippocampal brain-derived neurotrophic factor (BDNF) and normalized hyperactivation of cyclin-dependent kinase 5 (Cdk5). Hyperactivated Cdk5 or gp120 treatment led to aberrant neurite outgrowth and BDNF treatment normalized the neurite outgrowth in NPC cultures. These results suggest that sustained exercise has trophic activity on the neuronal lineage which is mediated by Cdk5 modulation of the BDNF pathway.


Subject(s)
AIDS Dementia Complex/genetics , Brain-Derived Neurotrophic Factor/biosynthesis , Cyclin-Dependent Kinase 5/genetics , HIV Envelope Protein gp120/genetics , Neurites/metabolism , Physical Conditioning, Animal , AIDS Dementia Complex/metabolism , AIDS Dementia Complex/pathology , Animals , Brain-Derived Neurotrophic Factor/genetics , Cell Proliferation , Cell Survival , Cyclin-Dependent Kinase 5/metabolism , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Disease Models, Animal , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , HIV Envelope Protein gp120/metabolism , Humans , Male , Mice , Mice, Transgenic , Neurites/pathology , Neurogenesis/genetics , Transgenes
15.
Histochem Cell Biol ; 140(1): 23-32, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23793952

ABSTRACT

The neuronal cytoskeleton is tightly regulated by phosphorylation and dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Defects in the relative kinase and phosphatase activities and/or deregulation of compartment-specific phosphorylation result in neurodegenerative disorders. The largest family of cytoskeletal proteins in mammalian cells is the superfamily of intermediate filaments (IFs). The neurofilament (NF) proteins are the major IFs. Aggregated forms of hyperphosphorylated tau and phosphorylated NFs are found in pathological cell body accumulations in the central nervous system of patients suffering from Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. The precise mechanisms for this compartment-specific phosphorylation of cytoskeletal proteins are not completely understood. In this review, we focus on the mechanisms of neurofilament phosphorylation in normal physiology and neurodegenerative diseases. We also address the recent breakthroughs in our understanding the role of different kinases and phosphatases involved in regulating the phosphorylation status of the NFs. In addition, special emphasis has been given to describe the role of phosphatases and Pin1 in phosphorylation of NFs.


Subject(s)
Intermediate Filaments/enzymology , Intermediate Filaments/pathology , Neurons/enzymology , Peptidylprolyl Isomerase/metabolism , Humans , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/physiopathology , Neurons/pathology , Phosphorylation
16.
FASEB J ; 27(1): 174-86, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23038754

ABSTRACT

Alzheimer's disease (AD), one of the leading neurodegenerative disorders of older adults, which causes major socioeconomic burdens globally, lacks effective therapeutics without significant side effects. Besides the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs), it has been reported that cyclin-dependent kinase 5 (Cdk5), a critical neuronal kinase, is hyperactivated in AD brains and is, in part, responsible for the above pathology. Here we show that a modified truncated 24-aa peptide (TFP5), derived from the Cdk5 activator p35, penetrates the blood-brain barrier after intraperitoneal injections, inhibits abnormal Cdk5 hyperactivity, and significantly rescues AD pathology (up to 70-80%) in 5XFAD AD model mice. The mutant mice, injected with TFP5 exhibit behavioral rescue, whereas no rescue was observed in mutant mice injected with either saline or scrambled peptide. However, TFP5 does not inhibit cell cycle Cdks or normal Cdk5/p35 activity, and thereby has no toxic side effects (even at 200 mg/kg), a common problem in most current therapeutics for AD. In addition, treated mice displayed decreased inflammation, amyloid plaques, NFTs, cell death, and an extended life by 2 mo. These results suggest TFP5 as a potential therapeutic, toxicity-free candidate for AD.


Subject(s)
Alzheimer Disease/prevention & control , Enzyme Activators/pharmacology , Nerve Tissue Proteins/pharmacology , Amino Acid Sequence , Animals , Apoptosis , Mice , Mice, Transgenic , Molecular Sequence Data , Nerve Tissue Proteins/chemistry , Phosphorylation
17.
Mol Biol Cell ; 23(15): 2856-66, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22696682

ABSTRACT

Our previous data suggested that the human basic helix-loop-helix transcription factor achaete-scute homologue-1 (hASH1) may stimulate both proliferation and migration in the lung. In the CNS, cyclin-dependent kinase 5 (Cdk5) and its activator p35 are important for neuronal migration that is regulated by basic helix-loop-helix transcription factors. Cdk5/p35 may also play a role in carcinogenesis. In this study, we found that the neuronal activator p35 was commonly expressed in primary human lung cancers. Cdk5 and p35 were also expressed by several human lung cancer cell lines and coupled with migration and invasion. When the kinase activity was inhibited by the Cdk5 inhibitor roscovitine or dominant-negative (dn) Cdk5, the migration of lung cancer cells was reduced. In neuroendocrine cells expressing hASH1, such as a pulmonary carcinoid cell line, knocking down the gene expression by short hairpin RNA reduced the levels of Cdk5/p35, nuclear p35 protein, and migration. Furthermore, expression of hASH1 in lung adenocarcinoma cells normally lacking hASH1 increased p35/Cdk5 activity and enhanced cellular migration. We were also able to show that p35 was a direct target for hASH1. In conclusion, induction of Cdk5 activity is a novel mechanism through which hASH1 may regulate migration in lung carcinogenesis.


Subject(s)
Adenocarcinoma , Cyclin-Dependent Kinase 5 , DNA-Binding Proteins , Lung Neoplasms , Nerve Tissue Proteins , Transcription Factors , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , HEK293 Cells , Histone-Lysine N-Methyltransferase , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasm Invasiveness , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Purines/pharmacology , Roscovitine , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Neurobiol Aging ; 32(11): 2016-29, 2011 Nov.
Article in English | MEDLINE | ID: mdl-20031277

ABSTRACT

Cytoskeletal protein phosphorylation is frequently altered in neuropathologic states but little is known about changes during normal aging. Here we report that declining protein phosphatase activity, rather than activation of kinases, underlies aging-related neurofilament hyperphosphorylation. Purified PP2A or PP2B dephosphorylated the heavy neurofilament (NFH) subunit or its extensively phorphorylated carboxyl-terminal domain in vitro. In cultured primary hippocampal neurons, inhibiting either phosphatase induced NFH phosphorylation without activating known neurofilament kinases. Neurofilament phosphorylation in the mouse CNS, as reflected by levels of the RT-97 phosphoepitope associated with late axon maturation, more than doubled during the 12-month period after NFH expression plateaued at p21. This was accompanied by declines in levels and activity of PP2A but not PP2B, and no rise in activities of neurofilament kinases (Erk1,2, cdk5 and JNK1,2). Inhibiting PP2A in mice in vivo restored brain RT-97 to levels seen in young mice. Declining PP2A activity, therefore, can account for rising neurofilament phosphorylation in maturing brain, potentially compounding similar changes associated with adult-onset neurodegenerative diseases.


Subject(s)
Aging/metabolism , Cytoskeleton/metabolism , Neurons/metabolism , Phosphoric Monoester Hydrolases/metabolism , Animals , Axons/metabolism , Brain/cytology , Brain/metabolism , Cells, Cultured , Cyclin-Dependent Kinase 5/metabolism , Mice , Neurons/cytology , Phosphorylation/physiology , Spinal Cord/cytology , Spinal Cord/metabolism
19.
Mol Biol Cell ; 21(20): 3601-14, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20810788

ABSTRACT

Cyclin-dependent kinase 5 (Cdk5) plays a key role in the development of the mammalian nervous system; it phosphorylates a number of targeted proteins involved in neuronal migration during development to synaptic activity in the mature nervous system. Its role in the initial stages of neuronal commitment and differentiation of neural stem cells (NSCs), however, is poorly understood. In this study, we show that Cdk5 phosphorylation of p27(Kip1) at Thr187 is crucial to neural differentiation because 1) neurogenesis is specifically suppressed by transfection of p27(Kip1) siRNA into Cdk5(+/+) NSCs; 2) reduced neuronal differentiation in Cdk5(-/-) compared with Cdk5(+/+) NSCs; 3) Cdk5(+/+) NSCs, whose differentiation is inhibited by a nonphosphorylatable mutant, p27/Thr187A, are rescued by cotransfection of a phosphorylation-mimicking mutant, p27/Thr187D; and 4) transfection of mutant p27(Kip1) (p27/187A) into Cdk5(+/+) NSCs inhibits differentiation. These data suggest that Cdk5 regulates the neural differentiation of NSCs by phosphorylation of p27(Kip1) at theThr187 site. Additional experiments exploring the role of Ser10 phosphorylation by Cdk5 suggest that together with Thr187 phosphorylation, Ser10 phosphorylation by Cdk5 promotes neurite outgrowth as neurons differentiate. Cdk5 phosphorylation of p27(Kip1), a modular molecule, may regulate the progress of neuronal differentiation from cell cycle arrest through differentiation, neurite outgrowth, and migration.


Subject(s)
Cell Differentiation , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/enzymology , Phosphothreonine/metabolism , Amino Acid Sequence , Animals , Apoptosis , Cell Proliferation , Cyclin-Dependent Kinase 5/deficiency , Cyclin-Dependent Kinase Inhibitor p27/chemistry , Mice , Molecular Sequence Data , Mutation/genetics , Neurites/metabolism , Neurogenesis , Phosphorylation , Phosphoserine/metabolism , Protein Transport , RNA, Small Interfering/metabolism , Substrate Specificity , Transfection
20.
J Biol Chem ; 285(44): 34202-12, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-20720012

ABSTRACT

The activity of Cdk5-p35 is tightly regulated in the developing and mature nervous system. Stress-induced cleavage of the activator p35 to p25 and a p10 N-terminal domain induces deregulated Cdk5 hyperactivity and perikaryal aggregations of hyperphosphorylated Tau and neurofilaments, pathogenic hallmarks in neurodegenerative diseases, such as Alzheimer disease and amyotrophic lateral sclerosis, respectively. Previously, we identified a 125-residue truncated fragment of p35 called CIP that effectively and specifically inhibited Cdk5-p25 activity and Tau hyperphosphorylation induced by Aß peptides in vitro, in HEK293 cells, and in neuronal cells. Although these results offer a possible therapeutic approach to those neurodegenerative diseases assumed to derive from Cdk5-p25 hyperactivity and/or Aß induced pathology, CIP is too large for successful therapeutic regimens. To identify a smaller, more effective peptide, in this study we prepared a 24-residue peptide, p5, spanning CIP residues Lys(245)-Ala(277). p5 more effectively inhibited Cdk5-p25 activity than did CIP in vitro. In neuron cells, p5 inhibited deregulated Cdk5-p25 activity but had no effect on the activity of endogenous Cdk5-p35 or on any related endogenous cyclin-dependent kinases in HEK293 cells. Specificity of p5 inhibition in cortical neurons may depend on the p10 domain in p35, which is absent in p25. Furthermore, we have demonstrated that p5 reduced Aß(1-42)-induced Tau hyperphosphorylation and apoptosis in cortical neurons. These results suggest that p5 peptide may be a unique and useful candidate for therapeutic studies of certain neurodegenerative diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Cell Cycle Proteins/chemistry , Cyclin-Dependent Kinase 5/chemistry , Nerve Tissue Proteins/chemistry , Peptide Fragments/chemistry , Phosphotransferases/chemistry , tau Proteins/chemistry , Animals , Apoptosis , Humans , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Peptide Fragments/metabolism , Phosphorylation , Protein Structure, Tertiary , Rats , Tubulin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...