Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
J Biol Chem ; 285(13): 10064-10077, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20065354

ABSTRACT

Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-kappaB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (gamma-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-kappaB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-kappaB activation (e.g. in I kappaB alpha super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-kappaB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-kappaB activation, blocked TNFalpha- but not HDACI-mediated NF-kappaB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-kappaB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, gamma-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-kappaB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-kappaB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Leukemic , Histone Deacetylase Inhibitors/metabolism , Leukemia/drug therapy , Leukemia/enzymology , NF-kappa B/metabolism , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Enzyme Activation , HL-60 Cells , Humans , I-kappa B Kinase/metabolism , Jurkat Cells , Mutation , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species , SUMO-1 Protein/metabolism , Tumor Suppressor Proteins/metabolism , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...