Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Immunology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953295

ABSTRACT

The adverse effects observed in some cancer patients treated with erythropoiesis-stimulating agents such as erythropoietin (EPO) might be due to the latter's well-known immunosuppressive functions. Here, we used a mouse model of syngeneic triple-negative breast cancer to explore EPO's immunomodulatory role in a tumour setting. Our results showed that EPO treatment promotes tumour growth, exacerbates the 'immune desert', and results in a 'cold tumour'. EPO treatment changed the immune cell distribution in peripheral blood, secondary lymphoid organs, and the tumour microenvironment (TME). Our in-depth analysis showed that EPO mainly impacts CD4 T cells by accelerating their activation in the spleen and thus their subsequent exhaustion in the TME. This process is accompanied by a general elevation of CD39 expression by several immune cells (notably CD4 T cells in the tumour and spleen), which promotes an immunosuppressive TME. Lastly, we identified a highly immunosuppressive CD39+ regulatory T cell population (ICOS+, CTLA4+, Ki67+) as a potential biomarker of the risk of EPO-induced tumour progression. EPO displays pleiotropic immunosuppressive functions and enhances mammary tumour progression in mice.

2.
Sci Rep ; 13(1): 22145, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092873

ABSTRACT

Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.


Subject(s)
Legionella pneumophila , Legionella , Phthalic Acids , Humans , Legionella pneumophila/physiology , Phthalic Acids/pharmacology , Biofilms
3.
Physiol Plant ; 175(6): e14058, 2023.
Article in English | MEDLINE | ID: mdl-38148195

ABSTRACT

Root exudation is involved in the recruitment of beneficial microorganisms by trophic relationships and/or signalling pathways. Among beneficial microorganisms, Plant Growth-Promoting Rhizobacteria (PGPR) are known to improve plant growth and stress resistance. These interactions are of particular importance for species that do not interact with mycorrhizal fungi, such as rapeseed (Brassica napus L.) and camelina (Camelina sativa (L.) Crantz). However, heat stress is known to have a quantitative and qualitative impact on root exudation and could affect the interactions between plants and PGPR. We aimed to analyse the effects of PGPR inoculation on root morphology and exudation in rapeseed and camelina at the reproductive stage. The modulation of the effects of these interactions under heat stress was also investigated. The plants were inoculated twice at the reproductive stage with two different Pseudomonas species and were exposed to heat stress after the second inoculation. In non-stressing conditions, after bacterial inoculation, rapeseed and camelina exhibited two contrasting behaviours in C root allocation. While rapeseed plants seemed to suffer from the interactions with the bacteria, camelina plants appeared to control the relationship with the PGPR by modifying the composition of their root exudates. Under heat stress, the plant-PGPR interaction was unbalanced for rapeseed, for which the C allocation strategy is mainly driven by the C cost from the bacteria. Alternatively, camelina plants prioritized C allocation for their own above-ground development. This work opens up new perspectives for understanding plant-PGPR interactions, especially in an abiotic stress context.


Subject(s)
Alphaproteobacteria , Brassica napus , Brassica rapa , Mycorrhizae , Plant Roots/metabolism , Plants , Bacteria , Heat-Shock Response
4.
Pol J Microbiol ; 72(4): 477-490, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38103009

ABSTRACT

Algeria is one of the wealthiest countries in terms of hydrothermal sources, with more than two hundred hot springs. However, diverse and little-described microbial communities colonize these habitats, making them an intriguing research subject. This work reports the isolation of bacteria from two hot springs water samples in northeastern Algeria, evaluating their enzymatic activities and effect on plant pathogens. Out of the obtained 72 bacterial isolates and based on the 16S rRNA gene sequence analysis, the strain HGR5 belonging to Bacillus halotolerans had the most interesting activity profile. Interestingly, HGR5 was substantially active against Fusarium graminearum, Phytophthora infestans, and Alternaria alternata. Furthermore, this strain presented a high ability to degrade casein, Tween 80, starch, chitin, cellulose, and xylan. The genome sequence of HGR5 allowed taxonomic validation and screening of specific genetic traits, determining its antagonistic and enzymatic activities. Genome mining revealed that strain HGR5 encloses several secondary metabolite biosynthetic gene clusters (SM-BGCs) involved in metabolite production with antimicrobial properties. Thus, antimicrobial metabolites included bacillaene, fengycin, laterocidine, bacilysin, subtilosin, bacillibactin, surfactin, myxovirescin, dumulmycin, and elansolid A1. HGR5 strain genome was also mined for CAZymes associated with antifungal activity. Finally, the HGR5 strain exhibited the capacity to degrade polycaprolactone (PCL), a model substrate for polyester biodegradation. Overall, these results suggest that this strain may be a promising novel biocontrol agent with interesting plastic-degradation capability, opening the possibilities of its use in various biotechnological applications.


Subject(s)
Anti-Infective Agents , Genome, Bacterial , RNA, Ribosomal, 16S/genetics , Genomics
5.
J Saudi Heart Assoc ; 35(3): 254-257, 2023.
Article in English | MEDLINE | ID: mdl-37936896

ABSTRACT

Left ventricular non compaction (LVNC) is a rare congenital disease. It occurs due to an arrest of the myocardial fibers compaction during embryogenesis. Myocardial bridge (MB) is a coronary anomaly in which the myocardium. covers segments of the coronary arteries. We report a rare case of 62-year-old women who was diagnosed with the association of LVNC and MB revealed by chest pain and dyspnea. Some similar cases were reported in the last two decades suggesting that we may be in front of a usual yet underdiagnosed association. To our knowledge, this is the first case described in the Arab World.

6.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: mdl-37014702

ABSTRACT

The prevalence of obesity and type 2 diabetes is growing at an alarming rate, including among pregnant women. Low-calorie sweeteners (LCSs) have increasingly been used as an alternative to sugar to deliver a sweet taste without the excessive caloric load. However, there is little evidence regarding their biological effects, particularly during development. Here, we used a mouse model of maternal LCS consumption to explore the impact of perinatal LCS exposure on the development of neural systems involved in metabolic regulation. We report that adult male, but not female, offspring from both aspartame- and rebaudioside A-exposed dams displayed increased adiposity and developed glucose intolerance. Moreover, maternal LCS consumption reorganized hypothalamic melanocortin circuits and disrupted parasympathetic innervation of pancreatic islets in male offspring. We then identified phenylacetylglycine (PAG) as a unique metabolite that was upregulated in the milk of LCS-fed dams and the serum of their pups. Furthermore, maternal PAG treatment recapitulated some of the key metabolic and neurodevelopmental abnormalities associated with maternal LCS consumption. Together, our data indicate that maternal LCS consumption has enduring consequences on the offspring's metabolism and neural development and that these effects are likely to be mediated through the gut microbial co-metabolite PAG.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Animals , Mice , Male , Female , Humans , Pregnancy , Sweetening Agents , Energy Intake , Obesity/metabolism
7.
Appl Environ Microbiol ; 88(23): e0136822, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36354326

ABSTRACT

Members of the Campylobacter lari group are causative agents of human gastroenteritis and are frequently found in shellfish, marine waters, shorebirds, and marine mammals. Within a One Health context, we used comparative genomics to characterize isolates from a diverse range of sources and geographical locations within Europe and Australia and assess possible transmission of food, animal, and environmental isolates to the human host. A total of 158 C. lari isolates from Australia, Denmark, France, and Germany, which included 82 isolates from human stool and blood, 12 from food, 14 from domestic animal, 19 from waterbirds, and 31 from the environment were analyzed. Genome-wide analysis of the genetic diversity, virulence, and antimicrobial resistance (AMR) traits was carried-out. Most of the isolates belonged to C. lari subsp. lari (Cll; 98, 62.0%), while C. lari subsp. concheus and C. lari urease-positive thermotolerant Campylobacter (UPTC) were represented by 12 (7.6%) and 15 (9.5%) isolates, respectively. Furthermore, 33 (20.9%) isolates were not assigned a subspecies and were thus attributed to distant Campylobacter spp. clades. Whole-genome sequence-derived multilocus sequence typing (MLST) and core-genome MLST (cgMLST) analyses revealed a high genetic diversity with 97 sequence types (STs), including 60 novel STs and 14 cgMLST clusters (≤10 allele differences), respectively. The most prevalent STs were ST-21, ST-70, ST-24, and ST-58 (accounting for 13.3%, 4.4%, 3.8%, and 3.2% of isolates, respectively). A high prevalence of the 125 examined virulence-related loci (from 76.8 to 98.4% per isolate) was observed, especially in Cll isolates, suggesting a probable human pathogenicity of these strains. IMPORTANCE Currently, relatedness between bacterial isolates impacting human health is easily monitored by molecular typing methods. These approaches rely on discrete loci or whole-genome sequence (WGS) analyses. Campylobacter lari is an emergent human pathogen isolated from diverse ecological niches, including fecal material from humans and animals, aquatic environments, and seafood. The presence of C. lari in such diverse sources underlines the importance of adopting an integrated One Health approach in studying C. lari population structure for conducting epidemiological risk assessment. This retrospective study presents a comparative genomics analysis of C. lari isolates retrieved from two different continents (Europe and Australia) and from different sources (human, domestic animals, waterbirds, food, and environment). It was designed to improve knowledge regarding C. lari ecology and pathogenicity, important for developing effective surveillance and disease prevention strategies.


Subject(s)
Campylobacter Infections , Campylobacter lari , Leukemia, Lymphocytic, Chronic, B-Cell , One Health , Animals , Humans , Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Campylobacter lari/genetics , Campylobacter lari/isolation & purification , Genomics , Multilocus Sequence Typing , Retrospective Studies
8.
Microorganisms ; 10(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35336063

ABSTRACT

The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals norepinephrine (NE) and serotonin (5HT), two neuroactive molecules abundant in the gut. We treated E. faecium NCIMB10415 with 100 µM NE and 50 µM 5HT and tested its ability to form static biofilm (Confocal Laser Scanning Microscopy), adhere to the Caco-2/TC7 monolayer, affect the epithelial barrier function (Transepithelial Electrical Resistance) and human dendritic cells (DC) maturation, differentiation, and cytokines production. Finally, we evaluated the presence of a putative hormone sensor through in silico (whole genome sequence and protein modelling) and in vitro (Micro-Scale Thermophoresis) analyses. The hormone treatments increase biofilm formation and adhesion on Caco-2/TC7, as well as the epithelial barrier function. No differences concerning DC differentiation and maturation between stimulated and control bacteria were detected, while an enhanced TNF-α production was observed in NE-treated bacteria. Investigations on the sensor support the hypothesis that a two-component system on the bacterial surface can sense 5HT and NE. Overall, the data demonstrate that E. faecium NCIMB10415 can sense both NE and 5HT and respond accordingly.

9.
Angew Chem Int Ed Engl ; 61(7): e202110990, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34841648

ABSTRACT

The mechanism of separation methods, for example, liquid chromatography, is realized through rapid multiple adsorption-desorption steps leading to the dynamic equilibrium state in a mixture of molecules with different partition coefficients. Sorting of colloidal particles, including protein complexes, cells, and viruses, is limited due to a high energy barrier, up to millions kT, required to detach particles from the interface, which is in dramatic contrast to a few kT for small molecules. Such a strong interaction renders particle adsorption quasi-irreversible. The dynamic adsorption-desorption equilibrium is approached very slowly, if ever attainable. This limitation is alleviated with a local oscillating repulsive mechanical force generated at the microstructured stimuli-responsive polymer interface to switch between adsorption and mechanical-force-facilitated desorption of the particles. Such a dynamic regime enables the separation of colloidal mixtures based on the particle-polymer interface affinity, and it could find use in research, diagnostics, and industrial-scale label-free sorting of highly asymmetric mixtures of colloids and cells.


Subject(s)
Polymers/chemistry , Adsorption , Colloids/chemistry , Particle Size
10.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Article in English | MEDLINE | ID: mdl-34739370

ABSTRACT

Three bacterial strains, named hOe-66T, hOe-124 and hOe-125, were isolated from the haemolymph of different specimens of the flat oyster Ostrea edulis collected in Concarneau bay (Finistère, France). These strains were characterized by a polyphasic approach, including (i) whole genome analyses with 16S rRNA gene sequence alignment and pangenome analysis, determination of the G+C content, average nucleotide identity (ANI), and in silico DNA-DNA hybridization (isDDH), and (ii) fatty acid methyl ester and other phenotypic analyses. Strains hOe-66T, hOe-124 and hOe-125 were closely related to both type strains Pseudoalteromonas rhizosphaerae RA15T and Pseudoalteromonas neustonica PAMC 28425T with less than 93.3% ANI and 52.3% isDDH values. Regarding their phenotypic traits, the three strains were Gram-negative, 1-2 µm rod-shaped, aerobic, motile and non-spore-forming bacteria. Cells grew optimally at 25 °C in 2.5% NaCl and at 7-8 pH. The most abundant fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c), C16:0 and C17:1 ω8c. The strains carried a genome average size of 4.64 Mb and a G+C content of 40.28 mol%. The genetic and phenotypic results suggested that strains hOe-66T, hOe-124 and hOe-125 belong to a new species of the genus Pseudoalteromonas. In this context, we propose the name Pseudoalteromonas ostreae sp. nov. The type strain is hOe-66T (=CECT 30303T=CIP 111911T).


Subject(s)
Ostrea , Phylogeny , Pseudoalteromonas , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , France , Nucleic Acid Hybridization , Ostrea/microbiology , Pseudoalteromonas/classification , Pseudoalteromonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Front Microbiol ; 12: 697553, 2021.
Article in English | MEDLINE | ID: mdl-34335529

ABSTRACT

Fecal pollution in coastal areas is of a high concern since it affects bathing and shellfish harvesting activities. Wild waterbirds are non-negligible in the overall signal of the detectable pollution. Yet, studies on wild waterbirds' gut microbiota focus on migratory trajectories and feeding impact on their shape, rare studies address their comparison to other sources and develop quantitative PCR (qPCR)-based Microbial Source Tracking (MST) markers to detect such pollution. Thus, by using 16S rRNA amplicon high-throughput sequencing, the aims of this study were (i) to explore and compare fecal bacterial communities from wild waterbirds (i.e., six families and 15 species, n = 275 samples) to that of poultry, cattle, pigs, and influent/effluent of wastewater treatment plants (n = 150 samples) and (ii) to develop new MST markers for waterbirds. Significant differences were observed between wild waterbirds and the four other groups. We identified 7,349 Amplicon Sequence Variants (ASVs) from the hypervariable V3-V4 region. Firmicutes and Proteobacteria and, in a lesser extent, Actinobacteria and Bacteroidetes were ubiquitous while Fusobacteria and Epsilonbacteraeota were mainly present in wild waterbirds. The clustering of samples in non-metric multidimensional scaling (NMDS) ordination indicated a by-group clustering shape, with a high diversity within wild waterbirds. In addition, the structure of the bacterial communities was distinct according to bird and/or animal species and families (Adonis R 2 = 0.13, p = 10-4, Adonis R 2 = 0.11, p = 10-4, respectively). The Analysis of Composition of Microbiomes (ANCOM) showed that the wild waterbird group differed from the others by the significant presence of sequences from Fusobacteriaceae (W = 566) and Enterococcaceae (W = 565) families, corresponding to the Cetobacterium (W = 1427) and Catellicoccus (W = 1427) genera, respectively. Altogether, our results suggest that some waterbird members present distinct fecal microbiomes allowing the design of qPCR MST markers. For instance, a swan- and an oystercatcher-associated markers (named Swan_2 and Oyscab, respectively) have been developed. Moreover, bacterial genera harboring potential human pathogens associated to bird droppings were detected in our dataset, including enteric pathogens, i.e., Arcobacter, Clostridium, Helicobacter, and Campylobacter, and environmental pathogens, i.e., Burkholderia and Pseudomonas. Future studies involving other wildlife hosts may improve gut microbiome studies and MST marker development, helping mitigation of yet unknown fecal pollution sources.

12.
Int J Mol Sci ; 22(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361010

ABSTRACT

Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.


Subject(s)
Agrobacterium/physiology , Biofilms , Quorum Sensing , Rhodococcus/physiology , Acyl-Butyrolactones/metabolism , Agrobacterium/genetics , Agrobacterium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Rhodococcus/genetics , Rhodococcus/metabolism
13.
Sci Rep ; 11(1): 11533, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34075148

ABSTRACT

We previously showed that the physiological concentration of 17ß-estradiol in the vaginal environment is sufficient to affect the membrane dynamics and adhesion phenotype of the Lactobacillus crispatus strain CIP104459. However, L. crispatus is a heterogeneous species. Here, we investigated the effect of 17ß-estradiol on the recently isolated L. crispatus vaginal strain V4, related to a cluster distant from CIP104459 and at the limit of being a different subspecies. Grown in the same medium, the two strains expressed a highly similar pool of proteins. However, in contrast to CIP104459, L. crispatus V4 showed high aggregation potential and 17ß-estradiol promoted this phenotype. This effect was associated with large changes in cell-surface polarity and Lewis acid/base properties. In addition, we observed no effect on the membrane dynamics, contrary to CIP104459. These results can be explained by differences in the properties and organization of the S layer between the two strains. However, as for CIP104459, 17ß-estradiol increased biosurfactant production of L. crispatus V4 and their adhesion to vaginal cells. This suggests that 17ß-estradiol agonists would be valuable tools to favor a stable re-implantation of L. crispatus in the vaginal mucosa.


Subject(s)
Estradiol/pharmacology , Lactobacillus crispatus/metabolism , Vagina/microbiology , Female , Humans , Lactobacillus crispatus/isolation & purification
14.
Parasit Vectors ; 14(1): 252, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980273

ABSTRACT

BACKGROUND: Malaria vector control has been implemented chiefly through indoor interventions targeting primary vectors resulting in population declines-pointing to a possible greater proportional contribution to transmission by secondary malaria vectors with their predominant exophagic and exophilic traits. With a historical focus on primary vectors, there is paucity of data on secondary malaria vectors in many countries in Africa. This study sought to determine the species compositions and bionomic traits, including proportions infected with Plasmodium falciparum and phenotypic insecticide resistance, of secondary vectors in three sites with high malaria transmission in Kisumu County, western Kenya. METHODS: Cross-sectional sampling of adult Anopheles was conducted using indoor and outdoor CDC light traps (CDC-LT) and animal-baited traps (ABTs) in Kakola-Ombaka and Kisian, while larvae were sampled in Ahero. Secondary vectors captured were exposed to permethrin using WHO bioassays and then analyzed by ELISA to test for proportions infected with P. falciparum sporozoites. All Anopheles were identified to species using morphological keys with a subset being molecularly identified using ITS2 and CO1 sequencing for species identification. RESULTS: Two morphologically identified secondary vectors captured-An. coustani and An. pharoensis-were determined to consist of four species molecularly. These included An. christyi, An. sp. 15 BSL-2014, an unidentified member of the An. coustani complex (An. cf. coustani) and a species similar to that of An. pharoensis and An. squamosus (An. cf. pharoensis). Standardized (Anopheles per trap per night) capture rates demonstrate higher proportions of secondary vectors across most trapping methods-with overall indoor and outdoor CDC-LTs and ABT captures composed of 52.2% (n = 93), 78.9% (n = 221) and 58.1% (n = 573) secondary vectors respectively. Secondary vectors were primarily caught outdoors. The overall proportion of secondary vectors with P. falciparum sporozoite was 0.63% (n = 5), with the unidentified species An. cf. pharoensis, determined to carry Plasmodium. Overall secondary vectors were susceptible to permethrin with a > 99% mortality rate. CONCLUSIONS: Given their high densities, endophily equivalent to primary vectors, higher exophily and Plasmodium-positive proportions, secondary vectors may contribute substantially to malaria transmission. Unidentified species demonstrate the need for further morphological and molecular identification studies towards further characterization. Continued monitoring is essential for understanding their temporal contributions to transmission, the possible elevation of some to primary vectors and the development of insecticide resistance.


Subject(s)
Anopheles/parasitology , Malaria/epidemiology , Malaria/transmission , Mosquito Vectors/parasitology , Animals , Anopheles/classification , Cross-Sectional Studies , Ecology , Feeding Behavior , Female , Insecticide Resistance , Kenya/epidemiology , Malaria/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Mosquito Control/methods , Mosquito Vectors/classification
15.
ACS Omega ; 6(9): 6172-6184, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33718708

ABSTRACT

Delivering therapeutics to the posterior segment of the eye is challenging due to various anatomical and physical barriers. While significant improvements have been realized by introducing direct injections to diseased sites, these approaches come with potential side effects that can range from simple inflammation to severe retinal damage. The topical instillation of drugs remains a safer and preferred alternative for patients' compliance. Here, we report the synthesis of penetratin-complexed, redox-responsive hyaluronic acid-based nanogels for the triggered release and delivery of therapeutics to the posterior part of the eye via topical application. The synthesized nanogels were shown to release their load only when exposed to a reducing environment, similar to the cytoplasm. As a model drug, visual chromophore analog, 9-cis-retinal, was loaded into nanogels and efficiently delivered to the mouse retina's photoreceptors when applied topically. Electroretinogram measurements showed a partial recovery of photoreceptor function in all treated eyes versus untreated controls. To the best of our knowledge, this report constitutes the first attempt to use a topically applied triggered-release drug delivery system to target the pigmented layer of the retina, in addition to the first attempt to deliver the visual chromophore topically.

16.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33414288

ABSTRACT

Staphylococcus spp. and Pseudomonas spp. are widely distributed bacteria in the environment and are found in association with animals and humans. Here, we present the draft genome sequence data of the healthy human skin commensal strains Staphylococcus aureus MFP03, Staphylococcus epidermidis MFP04, Staphylococcus capitis MFP08, and Pseudomonas fluorescens MFP05.

17.
Front Microbiol ; 11: 591839, 2020.
Article in English | MEDLINE | ID: mdl-33363523

ABSTRACT

The skin constitutes with its microbiota the first line of body defense against exogenous stress including air pollution. Especially in urban or sub-urban areas, it is continuously exposed to many environmental pollutants including gaseous nitrogen dioxide (gNO2). Nowadays, it is well established that air pollution has major effects on the human skin, inducing various diseases often associated with microbial dysbiosis. However, very few is known about the impact of pollutants on skin microbiota. In this study, a new approach was adopted, by considering the alteration of the cutaneous microbiota by air pollutants as an indirect action of the harmful molecules on the skin. The effects of gNO2 on this bacterial skin microbiota was investigated using a device developed to mimic the real-life contact of the gNO2 with bacteria on the surface of the skin. Five strains of human skin commensal bacteria were considered, namely Staphylococcus aureus MFP03, Staphylococcus epidermidis MFP04, Staphylococcus capitis MFP08, Pseudomonas fluorescens MFP05, and Corynebacterium tuberculostearicum CIP102622. Bacteria were exposed to high concentration of gNO2 (10 or 80 ppm) over a short period of 2 h inside the gas exposure device. The physiological, morphological, and molecular responses of the bacteria after the gas exposure were assessed and compared between the different strains and the two gNO2 concentrations. A highly significant deleterious effect of gNO2 was highlighted, particularly for S. capitis MFP08 and C. tuberculostearicum CIP102622, while S. aureus MFP03 seems to be the less sensitive strain. It appeared that the impact of this nitrosative stress differs according to the bacterial species and the gNO2 concentration. Thus the exposition to gNO2 as an air pollutant could contribute to dysbiosis, which would affect skin homeostasis. The response of the microbiota to the nitrosative stress could be involved in some pathologies such as atopic dermatitis.

18.
Microorganisms ; 8(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143386

ABSTRACT

Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.

19.
Int J Surg Case Rep ; 75: 193-197, 2020.
Article in English | MEDLINE | ID: mdl-32961458

ABSTRACT

INTRODUCTION: Chronic anterior cruciate ligament (ACL) tear might be difficult to diagnose on MRI. Indirect signs might be a typical meniscal or cartilage lesion, or a spontaneous anterior drawer visualized by a decreased angle of the posterior cruciate ligament (PCL). PRESENTATION OF CASE: A 27-year-old former ballet dancer was admitted to the emergency department for a locked left knee, without never having experienced previous symptoms of giving way or locking. The MRI performed revealed a medial meniscus bucket handle tear, without traumatic bone marrow oedema or ligament injury. The PCL angle was 130°. A former MRI of her left knee performed 1 year previously to investigate on the recurrent catching of her left knee showed a grade III medial meniscal tear of the posterior horn, and buckling of the PCL angle of 100°, as a sign of chronic ACL rupture. During arthroscopy and medial meniscal repair, the ACL showed complete loss of tension, and was therefore reconstructed simultaneously to enable proper meniscal healing. DISCUSSION AND CONCLUSION: Chronic ACL insuffiency is a major risk factor for subsequent medial meniscus tear, especially bucket handle tear. The locked knee might unable proper pre-operative clinical examination. The preoperative MRI therefore being the only possibility to diagnose concomitant ligamentous injury. This is the first case reported in literature showing, that a positive PCL angle sign might be falsely negative due to a locked medial meniscus bucket handle tear.

20.
Exp Hematol ; 88: 15-27, 2020 08.
Article in English | MEDLINE | ID: mdl-32721504

ABSTRACT

Thrombopoietin (TPO), through activation of its cognate receptor Mpl, is the major regulator of platelet production. However, residual platelets observed in TPO- and Mpl-loss-of-function (LOF) mice suggest the existence of an additional factor to TPO in platelet production. As erythropoietin (EPO) exhibited both in vitro megakaryocytic potential, in association with other early-acting cytokines, and in vivo platelet activation activity, we sought to investigate its role in this setting. Here, we used multiple LOF models to decipher the reciprocal role of EPO and TPO in the regulation of platelet production in TPO-LOF and Mpl-LOF mice and of platelet size heterogeneity in wild-type mice. We first identified EPO as the major thrombopoietic factor in the absence of the TPO-Mpl pathway. Based on the study of several mouse models we found that the EPO-EPO receptor pathway acts on late-stage megakaryopoiesis and is responsible for large-sized platelet production, while the TPO-Mpl pathway promotes small-sized platelet production. On the basis of our data, EPO might be used for thrombocytopenia supportive therapy in congenital amegakaryocytopoiesis. Furthermore, as a distribution skewed toward large platelets is an independent risk factor and a poor prognosis indicator in atherothrombosis, the characterization of EPO's role in the production of large-sized platelets, if confirmed in humans, may open new perspectives in the understanding of the role of EPO-induced platelets in atherothrombosis.


Subject(s)
Blood Platelets/metabolism , Erythropoietin/metabolism , Megakaryocytes/microbiology , Thrombopoiesis , Thrombopoietin/metabolism , Animals , Erythropoietin/genetics , Female , Mice , Mice, Knockout , Thrombopoietin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...