Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Nucleic Acids ; 23: 476-486, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33510937

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) arises from epigenetic changes that de-repress the DUX4 gene in muscle. The full-length DUX4 protein causes cell death and muscle toxicity, and therefore we hypothesize that FSHD therapies should center on inhibiting full-length DUX4 expression. In this study, we developed a strategy to accomplish DUX4 inhibition using U7-small nuclear RNA (snRNA) antisense expression cassettes (called U7-asDUX4). These non-coding RNAs were designed to inhibit production or maturation of the full-length DUX4 pre-mRNA by masking the DUX4 start codon, splice sites, or polyadenylation signal. In so doing, U7-asDUX4 snRNAs operate similarly to antisense oligonucleotides. However, in contrast to oligonucleotides, which are limited by poor uptake in muscle and a requirement for lifelong repeated dosing, U7-asDUX4 snRNAs can be packaged within myotropic gene therapy vectors and may require only a single administration when delivered to post-mitotic cells in vivo. We tested several U7-asDUX4s that reduced DUX4 expression in vitro and improved DUX4-associated outcomes. Inhibition of DUX4 expression via U7-snRNAs could be a new prospective gene therapy approach for FSHD or be used in combination with other strategies, like RNAi therapy, to maximize DUX4 silencing in individuals with FSHD.

2.
Mol Ther ; 27(12): 2123-2133, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31543414

ABSTRACT

Symptoms of spinal muscular atrophy (SMA) disease typically begin in the late prenatal or the early postnatal period of life. The intrauterine (IU) correction of gene expression, fetal gene therapy, could offer effective gene therapy approach for early onset diseases. Hence, the overall goal of this study was to investigate the efficacy of human survival motor neuron (hSMN) gene expression after IU delivery in SMA mouse embryos. First, we found that IU-intracerebroventricular (i.c.v.) injection of adeno-associated virus serotype-9 (AAV9)-EGFP led to extensive expression of EGFP protein in different parts of the CNS with a great number of transduced neural stem cells. Then, to implement the fetal gene therapy, mouse fetuses received a single i.c.v. injection of a single-stranded (ss) or self-complementary (sc) AAV9-SMN vector that led to a lifespan of 93 (median of 63) or 171 (median 105) days for SMA mice. The muscle pathology and number of the motor neurons also improved in both study groups, with slightly better results coming from scAAV treatment. Consequently, fetal gene therapy may provide an alternative therapeutic approach for treating inherited diseases such as SMA that lead to prenatal death or lifelong irreversible damage.


Subject(s)
Dependovirus/genetics , Fetus/metabolism , Genetic Therapy , Genetic Vectors/administration & dosage , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 2 Protein/genetics , Animals , Disease Models, Animal , Female , Fetus/pathology , Genetic Vectors/genetics , Male , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/mortality , Muscular Atrophy, Spinal/pathology , Phenotype , Spinal Cord/metabolism , Spinal Cord/pathology
3.
RNA ; 25(9): 1211-1217, 2019 09.
Article in English | MEDLINE | ID: mdl-31209064

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is among the most common forms of muscular dystrophy. FSHD is caused by aberrant expression of the toxic DUX4 gene in muscle. Detecting endogenous DUX4 in patient tissue using conventional methods can be challenging, due to the low level of DUX4 expression. Therefore, developing simple and trustworthy DUX4 detection methods is an important need in the FSHD field. Here, we describe such a method, which uses the RNAscope assay, an RNA in situ hybridization (ISH) technology. We show that a custom-designed RNAscope assay can detect overexpressed DUX4 mRNA in transfected HEK293 cells and endogenous DUX4 mRNA in FSHD patient-derived myotubes. The RNAscope assay was highly sensitive for tracking reductions in DUX4 mRNA following treatment with our therapeutic mi405 microRNA, suggesting that RNAscope-based DUX4 expression assays could be developed as a prospective outcome measure in therapy trials. This study could set the stage for optimizing and developing a new, rapid RNA ISH-based molecular diagnostic assay for future clinical use in the FSHD field.


Subject(s)
Homeodomain Proteins/genetics , In Situ Hybridization/methods , RNA/genetics , Cell Line , Gene Expression Profiling/methods , HEK293 Cells , Humans , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Pathology, Molecular/methods , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...