Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 16120, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167963

ABSTRACT

Nowadays, Transit-Oriented Development (TOD) plays a vital role for public transport planners in developing potential city facilities. Knowing the necessity of this concept indicates that TOD effective parameters such as network accessibility (node value) and station-area land use (place value) should be considered in city development projects. To manage the coordination between these two factors, we need to consider ridership and peak and off-peak hours as essential enablers in our investigations. To aim this, we conducted our research on Chengdu rail-transit stations as a case study to propose our Node-Place-Ridership-Time (NPRT) model. We applied the Multiple Linear Regression (MLR) to examine the impacts of node value and place value on ridership. Finally, K-Means and Cube Methods were used to classify the stations based on the NPRT model results. This research indicates that our NPRT model could provide accurate results compared with the previous models to evaluate rail-transit stations.


Subject(s)
Transportation , Cities , Transportation/methods
2.
Materials (Basel) ; 15(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35888320

ABSTRACT

This research study applied Artificial Neural Networks (ANNs) to predict and evaluate the structural responses of externally bonded FRP (EB-FRP)-strengthened RC T-beams under combined torsion and shear. Previous studies proved that, compared to reinforced concrete (RC) rectangular beams, RC T-beams performance in shear is significantly higher in structural analysis and design. The structural response of RC beams experiences a critical change while torsion moments are applied in load conditions. Fiber Reinforced Polymer (FRP) is used to retrofit the structural elements due to changing structural design codes and loadings, especially in earthquake-prone countries. We applied Finite Element Method (FEM) software, ABAQUS, to provide a precise numerical database of a set of experimentally tested FRP-retrofitted RC T-beams in previous research works. ANN predicted structural analysis results and Mean Square Error (MSE) and Multiple Determination Coefficients (R2) proved the accuracy of this study. The MSE values that were less than 0.0009 and R2 values greater than 0.9960 showed that the ANN precisely fits the data. The consistency between analyzed experimental and numerical results demonstrated the accurate implication of ANN, MSE, and R2 in predicting the structural responses of EB-FRP- strengthened RC T-beams.

3.
Materials (Basel) ; 15(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591551

ABSTRACT

Fiber-reinforced polymers (FRPs) retrofit reinforced concrete (RC) structures. ABAQUS finite element software was used to perform numerical parametric analysis on a group of RC beams in this research. All specimens were retrofitted by FRP strips as an external retrofitting and experimentally tested up to previous researchers' failure points. The range of subjects examined in these RC beams included cracking torque, ultimate torque, angle of twist, and the effect of using FRP on these subjects. We applied artificial neural networks (ANNs) to predict the structural behavior of RC beams under combined torsion and bending to develop the research accuracy. After testing, the ANN results were compared with the ABAQUS results. Consequently, a reasonable examination of the determined mathematical and trial results confirmed this study's logical accuracy in predicting retrofitted RC beams' structural behavior under combined loading.

SELECTION OF CITATIONS
SEARCH DETAIL
...