Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 309: 119688, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35793713

ABSTRACT

The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.


Subject(s)
Environmental Pollutants , Microalgae , Water Purification , Biofuels , Biomass , Environmental Pollutants/metabolism , Microalgae/metabolism , Wastewater
2.
Article in English | MEDLINE | ID: mdl-32592847

ABSTRACT

Over the past decade, the usages of carbon nanotubes in various industries have been increased. Multi-walled carbon nanotubes (MWCNTs) are special form of carbon nanotubes which are used as nano-absorbents for various purposes of different industries due to their high surface to volume ratio. In aquatic environments these active nano-agents can easily absorb and accumulate in animal cells and tissues due to their tiny sizes and induce toxicity effects on bio-organisms mainly via pro-oxidants production. The present study assayed MWCNTs toxicity effects on anti-oxidative enzymes activities, serum hormonal and biochemical stress biomarkers, hematology parameters, histopathology and growth performance of the common carp Cyprinus carpio. Experiment was conducted in five treatments including 0 (control), 5, 10, 15, 20 mg/l MWCNTs in triplicate and each of the experimental tanks consisted of a 400-l recirculating system, stocked with, 20 fish (12 ± 2 g) for 28 days. The results indicated that by increasing the concentrations of the MWCNTs weight gain, specific growth rate and survival rate parameters were decreased. The findings showed that cortisol secretion, blood glucose level and anti-oxidative enzymes activities were increased with the increase of MWCNTs concentrations in the treatments. Histopathology results depicted that 15 and 20 mg/l MWCNTs caused hyperplasia, telangiectasia, apoptosis, and necrosis damages in gills and also, apoptosis, sinusoidal spaces, fibrosis, hepatocyte degeneration and necrosis in the liver of C. carpio. Despite these findings, further researches on effects of nanomaterials on aquatic organisms and ecosystems are essential to protect these environments against the newly found nanomaterials hazards.


Subject(s)
Carps/metabolism , Nanotubes, Carbon/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Biomarkers/blood , Gills/drug effects , Gills/metabolism , Gills/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Oxidative Stress/drug effects , Stress, Physiological/drug effects , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...