Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Environ Int ; 181: 108288, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918065

ABSTRACT

A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.


Subject(s)
Environmental Monitoring , Fishes , Animals , Humans , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Mass Spectrometry/methods
2.
Environ Int ; 178: 108094, 2023 08.
Article in English | MEDLINE | ID: mdl-37478678

ABSTRACT

High resolution mass spectrometry (HRMS)-based non-target analysis coupled with ion mobility spectrometry (IMS) is gaining momentum due to its ability to provide complementary information which can be useful in the identification of unknown organic chemicals in support of efforts in unraveling the complexity of the chemical exposome. The chemical exposome in the marine environment, though not as well studied as its freshwater counterparts, is not foreign to chemical diversity specially when it comes to potentially bioaccumulative and bioactive polyhalogenated organic contaminants and natural products. In this work we present in detail how we utilized IMS-HRMS coupled with gas chromatographic separation and atmospheric pressure chemical ionization (APCI) to annotate polyhalogenated organic chemicals in French bivalves collected from 25 sites along the French coasts. We describe how we used open cheminformatic tools to exploit isotopologue patterns, isotope ratios, Kendrick mass defect (Cl scale), and collisional cross section (CCS), in order to annotate 157 halogenated features (level 1: 54, level 2: 47, level 3: 50, and level 4: 6). Grouping the features into 11 compound classes was facilitated by a KMD vs CCS plot which showed co-clustering of potentially structurally-related compounds. The features were semi-quantified to gain insight into the distribution of these halogenated features along the French coast, ultimately allowing us to differentiate between sites that are more anthropologically impacted versus sites that are potentially biodiverse.


Subject(s)
Ion Mobility Spectrometry , Organic Chemicals , Mass Spectrometry/methods , Atmospheric Pressure , Fresh Water
3.
Chemosphere ; 335: 139110, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37270038

ABSTRACT

PFASs are ubiquitous in the global environment due to their wide use, persistence and bioaccumulation, and are of concern for human health. This study investigated the levels of PFASs in seafood with a view to provide knowledge on the occurrence of PFASs in marine resources and to evaluate seafood safety and human health risk via dietary exposure to coastal communities in the Gulf of Guinea, where there is currently very little data. The sum of targeted PFASs was between 91 and 1510 pg g-l ww (mean 465 ± 313 pg g-l ww), with PFOS and long-chain PFCAs prevailing. The concentrations of PFASs in the three species of croakers were species- and location-dependent, with habitat and anthropogenic pressure as likely drivers of the differences. Significantly higher contamination levels were found in male croakers. The trophic transfer and biomagnification of PFASs from shrimps to croakers was evidenced for PFOS and long-chain PFCAs (with a significant increase of contaminants from the prey to the predator). The calculated estimated daily intakes (EDIs) and hazard ratio (HR) for PFOS in croakers (whole fish and muscles) and shrimp were lower than the European Food and Safety Agency's recommended level for PFOS (1.8 ng kg-1 day-1) and below the HR safety threshold value of 1. From the results, based on present safety limits, PFOS levels in croakers and shrimps from the Gulf of Guinea do not pose immediate health risks to the human population. This study provides the first insight regarding the distribution of PFASs in seafood from the tropical NE Atlantic region of the Gulf of Guinea and highlights the need for further monitoring across the Gulf.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Animals , Male , Humans , Guinea , Prevalence , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids/analysis , Seafood/analysis , Environmental Monitoring/methods
4.
Chemosphere ; 330: 138702, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37062393

ABSTRACT

Organophosphate esters (OPEs), chemicals widely used in industrial production, electronics and domestic products, have become ubiquitous environmental contaminants. In this study, the levels and spatial distribution of 11 OPEs (aryl, alkyl and halogenated) were investigated in over 100 samples of filter-feeding bivalves collected yearly between 2014 and 2021 at sites of contrasted pressure along the French coasts. OPEs were found in virtually all samples, indicating their widespread spatial and temporal occurrence in coastal bivalves and the relevance of their biomonitoring. The median concentrations were between 0.4 (TMPP) and 4.9 ng g-1 dry weight (TCIPP), with TCIPP, TNBP and EHDPP found at the highest median values. TCEP and TBOEP were not frequently detected overall, but each year, the same sites showed repeatedly high concentrations. Structurally-related OPEs generally correlated, but the geographical distributions were not predictable from known anthropogenic pressures (population in the catchment area, industry), with little comparability with other hydrophobic contaminants. If the relation between sources of OPEs and bioaccumulated levels remains uncertain, local hotspots, rather than riverine/atmospheric transportation, could account for their geographical distribution. A systematic review of the levels of OPEs found in filter-feeding bivalves worldwide revealed comparable levels in our study with those reported elsewhere; however, the levels across and within (when available) studies generally spanned several orders of magnitude, indicating high spatial and temporal heterogeneity. In view of the growing concerns regarding OPEs, this study provides essential reference data for future studies of their occurrence on European coasts and supports the need for a more systematic (bio)monitoring of this class of contaminant.


Subject(s)
Environmental Monitoring , Flame Retardants , Biological Monitoring , China , Esters , Flame Retardants/analysis , Organophosphates
5.
Aquat Toxicol ; 248: 106207, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35635982

ABSTRACT

Chemical contaminants are one of the causes of the ongoing degradation of coastal and estuarine nurseries, key functional habitats in which the juveniles of many marine species grow. As chemical contaminants can cause a decrease in the energy available and induce defence mechanisms reducing the amount of energy allocated to life history traits, quantifying their effect on the fitness of juvenile fish is key to understand their population-level consequences. However, these effects are primarily estimated experimentally or in the wild but on a limited number of contaminants or congeners that do not reflect the wide variety of chemical contaminants to which juvenile fish are exposed. To address this issue, we measured concentrations of 14 trace metal elements (TMEs) and bioaccumulative organic contaminants (OCs) in European sea bass juveniles (1-year-old) from three major French nurseries (Seine, Loire and Gironde estuaries). We tested the hypotheses that (i) levels and profiles of contaminants differed among studied nurseries, and ii) fish growth and body condition (based on morphometric measurements and muscle C:N ratio) were lower in individuals with higher contaminant concentrations. Multivariate analyses showed that each nursery had distinct contaminant profiles for both TMEs and OCs, confirming the specific contamination of each estuary, and the large array of contaminants accumulated by sea bass juveniles. Increasing concentrations in some TMEs were associated to decreased growth, and TMEs were consistently related to lower fish body condition. The effect of OCs was more difficult to pinpoint possibly due to operational constraints (i.e., analyses on pooled fish) with contrasting results (i.e., higher growth and decreased body condition). Overall, this study shows that chemical contaminants are related to lower fish growth and body condition at an early life stage in the wild, an effect that can have major consequences if sustained in subsequent ages and associated with a decline in survival and/or reproductive success.


Subject(s)
Bass , Fish Diseases , Trace Elements , Water Pollutants, Chemical , Animals , Bass/metabolism , Ecosystem , Estuaries , Trace Elements/analysis , Water Pollutants, Chemical/toxicity
6.
Environ Pollut ; 292(Pt A): 118328, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34653587

ABSTRACT

The Mytilus mussels are spread all over the world and many related species coexist in several areas and can produce hybrid offspring. Mussels have been used for decades in national and international programs to monitor chemical contamination in the environment. Differences in bioaccumulation and biotransformation abilities between species and their hybrids should be evaluated to assess the comparability of the results obtained within the international biomonitoring programs. The objective of this study was to characterize bioaccumulation abilities and biomarker responses in Mytilus edulis, Mytilus galloprovincialis and their hybrids via an in situ transplantation experimentation on their progenies. Four mussel groups (M. edulis, M. galloprovincialis and two hybrids batches) issued from genetically characterized parents were transplanted for one year in Charente Maritime (France) to ensure their exposure to identical sources of contamination. The bioaccumulation of several families of contaminants (trace metals, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers, polychlorinated biphenyls), the response of several biomarkers (DNA strand breaks level, lysosomal membrane stability, metallothionein content, acetylcholine esterase activity) and some physiological parameters (growth, mortality, gonadal development), were analyzed. Differences were observed between species, however they were contaminant-specific. Variations in contaminants levels were observed between progenies, with higher levels of Cu, PBDE, PCB in M. edulis, and higher levels of Cd, Hg, Zn in M galloprovincialis. This study demonstrated that variations in contaminant bioaccumulation and different biomarker responses exist between Mytilus species in the field. Data on species or the presence of hybrid individuals (or introgression) is an important additional parameter to add to biomonitoring programs databases.


Subject(s)
Mytilus edulis , Mytilus , Water Pollutants, Chemical , Animals , Bioaccumulation , Biomarkers/metabolism , Ecotoxicology , Environmental Monitoring , Mytilus/metabolism , Mytilus edulis/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Environ Sci Pollut Res Int ; 28(39): 55252-55264, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34128165

ABSTRACT

Concentrations, profiles and muscle-liver distribution of halogenated natural products (HNPs) and anthropogenic persistent organic pollutants (POPs) were investigated in five large pelagic fish species and one smaller planktivore fish species from the Western Indian Ocean. Analysis of swordfish muscle from the Seychelles revealed the predominance of HNPs, with the highest concentrations found for 2'-methoxy-2,3',4,5'- tetraBDE (2'-MeO-BDE 68 or BC-2), 6-methoxy-2,2',4,4'- tetraBDE (6-MeO-BDE 47 or BC-3) and 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1), along with varied contributions of further HNPs. The mean concentration of ∑HNPs (330 ng/g lw) was one or two orders of magnitude higher than ∑DDTs (60 ng/g lw) and ∑PCBs (6.8 ng/g lw). HNPs (BC-2, BC-3 and Q1) were also predominant in individual samples of three tropical tuna species from the Seychelles and from other regions of the Western Indian Ocean (Mozambique Channel, off Somalia and Chagos Archipelago). Non-targeted gas chromatography coupled with electron capture negative ion mass spectrometry operated in the selected ion monitoring mode (GC/ECNI-MS-SIM) analysis of one swordfish sample indicated low abundance of rarely reported HNPs (three hexachloro-1'-methyl-1,2'-bipyrrole (Cl6-MBP) isomers and pentabromo-1,1'-dimethyl-2,2'-bipyrroles (Br5-DBP)) but no further abundant unscreened polyhalogenated compounds.


Subject(s)
Biological Products , Indian Ocean , Mozambique , Seychelles
8.
Chemosphere ; 268: 129312, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33352512

ABSTRACT

The levels and trends of four bioaccumulative synthetic musks (galaxolide - HHCB, tonalide - AHTN, musk xylene - MX and musk ketone - MK) were investigated in filter-feeding bivalves collected yearly since 2010 at sites of contrasted pressure along the French coasts. Quantification rates were high for all 4 compounds (85-99%), indicating their geographical and temporal extensive occurrence in the French coastal environment. The polycyclic musks HHCB and AHTN prevailed, with median concentrations of 2.27 ng g-1 dw and of 0.724 ng g-1 dw, whilst nitromusks were found 1 to 2 orders of magnitude lower. These levels were in the high range of those encountered for various other CEC families at the same sites and comparable to those from other locations on European coasts. Unlike for the other musks, the accumulation of HHCB was evidenced to be species-specific, with significantly lower levels found in oysters in comparison with mussels, possibly suggesting a higher metabolization in oysters. Geographical differences in musk distribution highlighted the sites under strong anthropogenic pressures and these differences were found to be consistent between years. The HHCB/AHTN ratio proved to be discriminant to explain the relative occurrence of polycyclic musks. The 8-year time series showed that only the now-banned compound MX displayed a significant decrease in most sites, whilst stable concentrations of the other musks suggested consistency in their usage over the last decade. These results provide reference data for future studies of the occurrence of personal care products on European coasts.


Subject(s)
Bivalvia , Cosmetics , Water Pollutants, Chemical , Animals , Benzopyrans/analysis , Fatty Acids, Monounsaturated , Humans , Receptor Protein-Tyrosine Kinases , Receptors, Cholinergic , Tetrahydronaphthalenes/analysis , Water Pollutants, Chemical/analysis
9.
Environ Sci Pollut Res Int ; 28(42): 59345-59357, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33026620

ABSTRACT

Two different sample preparation protocols for the determination of 37 emerging and historical halogenated flame retardants (HFRs) in marine tissues were compared with regards to extraction recovery, lipid removal efficiency, repeatability, reproducibility, and ability to measure sub-ng g-1 (dry weight) concentrations in marine biota. One method involved a purification step using gel permeation chromatography (GPC) followed by a HPLC fractionation step on a Partisil amino-cyano normal phase (GPC-Partisil procedure) and the other more traditional method was based on sulphuric acid treatment followed by silica column fractionation (H2SO4-silica procedure). The samples were analysed by gas chromatography (GC) and liquid chromatography (LC) tandem mass spectrometry (MS/MS). Sample fractionation in both methods enabled unique sample preparation procedures to isolate the GC from the LC amenable compounds. Both methods could remove > 99% of the lipids which was necessary prior to GC- and LC-MS/MS analyses. The majority of the target compounds (70%) had acceptable recoveries between 60-120% for both methods. However, the sulphuric acid treatment resulted in the degradation of the TBP-AE and the silica column fractionation resulted in the loss of BEH-TEBP and the elution of PBB-Acr and TBBPA-BME in the unsuitable fraction. High recoveries of DBE-DBCH (α+ß), EHTBB, BTBPE, BEH-TEBP, and PBB-Acr were attributed to matrix effects, suggesting the need to use isotope-labelled surrogate standards of the target compounds. The optimisation of the silica column chromatography, GPC, and Partisil fractionation is described and discussed to afford easy implementation of the method. The method using GPC followed by Partisil fractionation is more efficient and more reproducible than the sulphuric acid-silica procedure. The application of this method to marine biota reference materials revealed the presence of relatively high concentrations of DBE-DBCH isomers and BDE-47 in fish samples. The method detection limits comply with the recommendations of the European Commission.


Subject(s)
Flame Retardants , Animals , Biota , Chromatography, Liquid , Flame Retardants/analysis , Gas Chromatography-Mass Spectrometry , Reproducibility of Results , Tandem Mass Spectrometry
10.
Sci Total Environ ; 755(Pt 1): 142355, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33022458

ABSTRACT

The hypothesis that C60 fullerene nanoparticles (C60) exert an antagonistic interactive effect on the toxicity of benzo[a]pyrene (BaP) has been supported by this investigation. Mussels were exposed to BaP (5, 50 & 100µg/L) and C60 (C60-1mg/L) separately and in combination. Both BaP and C60 were shown to co-localize in the secondary lysosomes of the hepatopancreatic digestive cells in the digestive gland where they reduced lysosomal membrane stability (LMS) or increased membrane permeability, while BaP also induced increased lysosomal lipid and lipofuscin, indicative of oxidative cell injury and autophagic dysfunction. Combinations of BaP and C60 showed antagonistic effects for lysosomal stability, mTORC1 (mechanistic target of rapamycin complex 1) inhibition and intralysosomal lipid (5 & 50µg/L BaP). The biomarker data (i.e., LMS, lysosomal lipidosis and lipofuscin accumulation; lysosomal/cell volume and dephosphorylation of mTORC1) were further analysed using multivariate statistics. Principal component and cluster analysis clearly indicated that BaP on its own was more injurious than in combination with C60. Use of a network model that integrated the biomarker data for the cell pathophysiological processes, indicated that there were significant antagonistic interactions in network complexity (% connectance) at all BaP concentrations for the combined treatments. Loss of lysosomal membrane stability probably causes the release of intralysosomal iron and hydrolases into the cytosol, where iron can generate harmful reactive oxygen species (ROS). It was inferred that this adverse oxidative reaction induced by BaP was ameliorated in the combination treatments by the ROS scavenging property of intralysosomal C60, thus limiting the injury to the lysosomal membrane; and reducing the oxidative damage in the cytosol and to the nuclear DNA. The ROS scavenging by C60, in combination with enhanced autophagic turnover of damaged cell constituents, appeared to have a cytoprotective effect against the toxic reaction to BaP in the combined treatments.


Subject(s)
Fullerenes , Nanoparticles , Animals , Benzo(a)pyrene/toxicity , Fullerenes/toxicity , Lysosomes , Models, Animal , Nanoparticles/toxicity
11.
Mar Pollut Bull ; 151: 110862, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056644

ABSTRACT

Marine plastic debris can act as a reservoir of chemical additives that can pose a potential threat to sensitive ecosystems such as coral reefs. A survey of foam macrodebris collected on beaches indeed revealed high concentrations of hexabromocyclododecanes (ΣHBCDD) in polystyrene (PS) samples (up to 1940 µg g-1). Results also showed that PS fragments can still leach over 150 ng g-1 d-1 of ΣHBCDD (primarily as the α-isomer) for relatively long durations, and that these additives are readily bioaccumulated and well-retained by corals. Despite significant HBCDD bioaccumulation in coral tissue, short-term exposure to HBCDD or PS leachate had no considerable effect on coral photosynthetic activity, symbiont concentration and chlorophyll content. Exposure to the PS leachate did however cause consistent polyp retraction in nubbins over the 5-day exposure. This response was not observed in animals exposed to HBCDD alone, suggesting that another constituent of the leachate stressed corals.


Subject(s)
Anthozoa/physiology , Environmental Monitoring , Flame Retardants , Polystyrenes/analysis , Water Pollutants, Chemical/analysis , Animals , Coral Reefs , Ecosystem
12.
Nanotoxicology ; 13(10): 1324-1343, 2019 12.
Article in English | MEDLINE | ID: mdl-31462104

ABSTRACT

The interactions between carbon-based engineered nanoparticles (ENPs) and organic pollutants might enhance the uptake of contaminants into biota. The present integrated study aimed to assess this potential 'Trojan Horse', probing the interactive effects of purpose-made multi-walled carbon nanotubes (MWCNTs), a representative ENP, and benzo[a]pyrene (BaP), a ubiquitous polycyclic aromatic hydrocarbon (PAH) pollutant, on the marine mussel Mytilus galloprovincialis. Mussels were exposed to MWCNTs and BaP either alone or in various combinations. The co-exposure of BaP with MWCNTs revealed that the presence of MWCNTs enhanced the aqueous concentrations of BaP, thereby reducing the uptake of this pollutant by mussels as evidenced by lowering BaP concentrations in the tissues. Determination of DNA damage (comet assay) showed a concentration-dependent response for BaP alone which was absent when MWCNTs were present. Global gene expression using microarray analyses indicated that BaP and MWCNTs, in combination, differentially activated those genes which are involved in DNA metabolism compared to the exposures of BaP or MWCNTs alone, and the gene expression response was tissue-specific. Mechanisms to explain these results are discussed and relate primarily to the adsorption of BaP on MWCNTs, mediated potentially by van der Waals interactions. The use of a novel approach based on gold-labeled MWCNTs to track their uptake in tissues improved the traceability of nanotubes in biological samples. Overall, our results did not indicate the 'Trojan Horse' effects following co-exposure to the contaminants and clearly showed that the adsorption of BaP to MWCNTs modified the uptake of the pollutant in marine mussels.


Subject(s)
Benzo(a)pyrene/toxicity , Mytilus/drug effects , Nanotubes, Carbon/toxicity , Animals , Comet Assay , DNA Damage , Gene Expression Regulation/drug effects , Water Pollutants, Chemical/toxicity
13.
Nanomaterials (Basel) ; 9(7)2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31288459

ABSTRACT

This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.

14.
Environ Pollut ; 252(Pt B): 1301-1310, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31252127

ABSTRACT

The contamination of marine ecosystems by contaminants of emerging concern such as personal care products or per- and polyfluoroalkyl substances is of increasing concern. This work assessed the concentrations of selected contaminants of emerging concern in water and sediment of European aquaculture areas, to evaluate their co-variation with legacy contaminants (polycyclic aromatic hydrocarbons) and faecal biomarkers, and estimate the risks associated with their occurrence. The 9 study sites were selected in 7 European countries to be representative of the aquaculture activities of their region: 4 sites in the Atlantic Ocean and 5 in the Mediterranean Sea. Musks, UV filters, preservatives, per- and polyfluoroalkyl substances and polycyclic aromatic hydrocarbons were detected in at least one of the sites with regional differences. While personal care products appear to be the main component of the water contamination, polycyclic aromatic hydrocarbons were mostly found in sediments. As expected, generally higher levels of personal care products were found in sewage impacted sites, urbanised coasts and estuaries. The risk assessment for water and sediment revealed a potential risk for the local aquatic environment from contaminants of both legacy and emerging concern, with a significant contribution of the UV filter octocrylene. Despite marginal contributions of per- and polyfluoroalkyl substances to the total concentrations, PFOS (perfluorooctane sulfonate) aqueous concentrations combined to its low ecotoxicity thresholds produced significant hazard quotients indicating a potential risk to the ecosystems.


Subject(s)
Acrylates/analysis , Alkanesulfonic Acids/analysis , Aquaculture , Environmental Monitoring , Fluorocarbons/analysis , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Atlantic Ocean , Ecosystem , Europe , Mediterranean Sea
15.
Sci Total Environ ; 666: 731-742, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30812007

ABSTRACT

The study aim was to determine a range of relevant persistent and emerging pollutants in oysters produced in an aquaculture facility located in an important production area, to assure their safety for human consumption. Pollutants, including 16 PAHs, 3 butyltins (BTs), 29 flame retardants (FRs, including organophosphate and halogenated FRs), 35 pesticides (including 9 pyrethroid insecticides) and 13 personal care products (PCPs, including musks and UV filters), were determined in oysters' tissues collected during one year in four seasonal sampling surveys. The seasonal environmental pollution on the production site was evaluated by water and sediment analysis. Furthermore, oysters' nutritional quality was also assessed and related with the consumption of healthy seafood, showing that oysters are a rich source of protein with low fat content and with a high quality index all year around. Results showed that most analysed pollutants were not detected either in oyster tissues or in environmental matrixes (water and sediments). The few pollutants detected in oyster tissues, including both regulated and non-legislated pollutants, such as a few PAHs (fluorene, phenanthrene, anthracene, fluoranthene, pyrene and indenopyrene), FRs (TPPO, TDCPP, DCP, BDE-47, BDE-209 and Dec 602) and PCPs (galaxolide, galaxolidone, homosalate and octocrylene), were present at low levels (in the ng/g dw range) and did not represent a significant health risk to humans. The observed seasonal variations related to human activities (e.g. tourism in summer) highlights the need for environmental protection and sustainable resource exploration for safe seafood production.


Subject(s)
Crassostrea/metabolism , Environmental Exposure/analysis , Food Contamination/analysis , Shellfish/analysis , Water Pollutants, Chemical/analysis , Animals , Aquaculture , Environmental Monitoring , Portugal
16.
Environ Toxicol Chem ; 37(5): 1291-1300, 2018 05.
Article in English | MEDLINE | ID: mdl-29359815

ABSTRACT

The diffusivity of 145 compounds in polydimethylsiloxane (PDMS) material was determined in the laboratory using a film stacking technique. The results were pooled with available literature data, providing a final data set of 198 compounds with diffusivity (DPDMS ) spanning over approximately 5 log units. The principal variables controlling the diffusivity of penetrants were investigated by comparing DPDMS within and between different homologous series. The dipole moment, molecular size, and flexibility of penetrants appear to be the most prevalent factors controlling a compound's diffusivity. A nonlinear quantitative structure-property relationship is proposed using as predicting variables the molecular volume, the number of rotatable bonds, the topological polar surface area, and the number of O and N atoms. The final relationship has a correlation coefficient of R2 = 0.81 and a mean absolute error of 0.26 m2 s-1 (log unit), approaching the average error for the experimentally determined values (0.12 m2 s-1 ). The model, based on a heuristic approach, is ready for use by analytical chemists with no specific background in theoretical chemistry (notably for passive sampler development). Environ Toxicol Chem 2018;37:1291-1300. © 2018 SETAC.


Subject(s)
Dimethylpolysiloxanes/chemistry , Environmental Monitoring/instrumentation , Models, Theoretical , Quantitative Structure-Activity Relationship , Diffusion , Normal Distribution
17.
Sci Total Environ ; 612: 492-500, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28865267

ABSTRACT

This work monitors flame retardants in sediment, mussel and water samples from European fish farms. Polybrominated diphenyl ethers (PBDEs) were detected in 95% of the sediment and mussel samples with mean levels of 8.60±22.6ngg-1 dw in sediments and 0.07±0.18ngg-1 dw in mussels. BDE-209 was the main contributor for the sediments and BDE-47 was found in about 60% of the samples of both matrices. Pentabromoethylbenzene (PBEB) and hexabromobenzene (HBB) were detected in 42% of the sediments, but not in mussels. Decabromodiphenyl ethane (DBDPE) was found in about 55% of the samples of both matrices. The same happened for dechloranes in mussels, but they were detected in 92% of the sediments. Syn-DP and anti-DP were always the main contributors. Methoxylated PBDEs (MeO-PBDEs) were detected in all mussels and some sediments, mainly 6-MeO-BDE-47 and 2'-MeO-BDE-68. Organophosphorus flame retardants (OPFRs) were found in all matrices with concentrations of 0.04-92.8ngg-1 dw in sediment, 0.50-102ngg-1 dw in mussel and 0.43-867ngl-1 in water. Only OPFRs were analysed in water samples as halogenated flame retardants and MeO-PBDEs are highly unlikely to be detected in water due to their physicochemical properties. Flame retardants have no application in fish farming so results should reflect the impact of human activity on the farm locations. A large majority of the most contaminated samples were collected from sampling spots that were at urban shores or in enclosed water bodies not completely open to the sea.


Subject(s)
Aquaculture , Bivalvia/chemistry , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Water Pollutants, Chemical/analysis , Animals , Seafood/analysis
18.
Sci Total Environ ; 612: 39-48, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28850851

ABSTRACT

This study focuses on the fate of pharmaceuticals discharged into an estuarine environment, particularly into the Turbidity Maximum Zone (TMZ). Batch experiments were set up to investigate the factors regulating the degradation of 53 selected pharmaceuticals. Treated effluents from Bordeaux city (France) were mixed with water from the estuarine Garonne River during 4weeks under 6 characterized conditions in order to assess the influence of suspended particulates, sterilization, untreated wastewater input and dilution on the degradation kinetics. Of the 53 pharmaceuticals monitored, 43 were quantified at the initial time. Only 7 exhibited a persistent behavior (e.g. carbamazepine, meprobamate) while biotic degradation was shown to be the main attenuation process for 38 molecules (e.g. abacavir, ibuprofen highly degradable). Degradation was significantly enhanced by increasing concentrations of suspended solids. A persistence index based on the half-lives of the compounds has been calculated for each of the 43 pharmaceuticals to provide a practical estimate of their relative stability. The stability of pharmaceuticals in estuarine environments is likely to be highly variable and attenuated primarily by changes in suspended solid concentration.

19.
Environ Res ; 161: 354-363, 2018 02.
Article in English | MEDLINE | ID: mdl-29195184

ABSTRACT

Marine pollution has been increasing as a consequence of anthropogenic activities. The preservation of marine ecosystems, as well as the safety of harvested seafood, are nowadays a global concern. Here, we report for the first time the contamination levels of a large set of 99 emerging and persistent organic contaminants (butyltins (BTs), polycyclic aromatic hydrocarbons (PAHs), pesticides including pyrethroids, pharmaceuticals and personal care products (PCPs) and flame retardants) in roe/gonads of sea urchin Paracentrotus lividus. Sea urchins are a highly prized worldwide delicacy, and the harvesting of this seafood has increased over the last decades, particularly in South West Atlantic coast, where this organism is harvested mainly for exportation. Sampling was performed in three harvesting sites of the NW Portuguese coast subjected to distinct anthropogenic pressures: Carreço, Praia Norte and Vila Chã, with sea urchins being collected in the north and south areas of each site. Butyltins and pharmaceuticals were not found at measurable levels. Several PAHs, four pyrethroids insecticides, four PCPs and eleven flame retardants were found in roe/gonads of sea urchins, though in general at low levels. Differences among harvesting sites and between areas within each site were found, the lowest levels of contaminants being registered in Carreço. The accumulation of contaminants in sea urchins' roe/gonads seemed to reflect the low anthropogenic pressure felt in the sampling sites. Nevertheless, taking into account the low accumulated levels of chemicals, results indicate that sea urchins collected in South West Atlantic coast are safe for human consumption.


Subject(s)
Environmental Pollutants , Paracentrotus , Polycyclic Aromatic Hydrocarbons , Animals , Environmental Pollutants/pharmacokinetics , Environmental Pollution , Gonads , Humans , Paracentrotus/chemistry , Polycyclic Aromatic Hydrocarbons/pharmacokinetics
20.
PLoS One ; 12(6): e0178460, 2017.
Article in English | MEDLINE | ID: mdl-28651000

ABSTRACT

Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new 'STressREsponse Microarray' (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 µg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota.


Subject(s)
Benzo(a)pyrene/toxicity , Mytilus/drug effects , Oxidative Stress/drug effects , Transcription, Genetic/drug effects , Transcriptome/drug effects , Water Pollutants/toxicity , Animals , Biomarkers , DNA Damage/drug effects , Environmental Exposure , Environmental Monitoring , Gills/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Mytilus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...