Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(11): 19294-19307, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859067

ABSTRACT

Double-slit interference experiments using monochromatic hard X-rays with the energy of 25 keV are presented. The experiments were performed at a synchrotron source with a distance of 110 m between the interferometer and the detector to produce an interference pattern with a sufficiently broad period that could be adequately sampled by a photon-counting detector with 75 micrometre pixels. In the single-particle version of the experiment, over one million image frames with a single registered photon in each one were collected. The sum of these frames showed a clear presence of the interference pattern with the expected period. Subsequent analysis provided an objective estimation of the minimal number of detected photons required to determine, in accordance with the Rose criterion, the presence of the photon interference. Apart from a general theoretical interest, these investigations were aimed at exploring the possibility of medical X-ray phase-contrast imaging in photon-counting regime at minimal radiation doses.

2.
Opt Express ; 31(15): 24328-24346, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475263

ABSTRACT

A set of non-configurable transversely-displaced masks has been designed and fabricated to generate high-quality X-ray illumination patterns for use in imaging techniques such as ghost imaging (GI), ghost projection, and speckle tracking. The designs include a range of random binary and orthogonal patterns, fabricated through a combination of photolithography and gold electroplating techniques. We experimentally demonstrated that a single wafer can be used as an illumination mask for GI, employing individual illumination patterns and also a mixture of patterns, using a laboratory X-ray source. The quality of the reconstructed X-ray ghost images has been characterized and evaluated through a range of metrics.

3.
J Med Imaging (Bellingham) ; 8(5): 052108, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34268442

ABSTRACT

Purpose: Breast cancer is the most common cancer in women in developing and developed countries and is responsible for 15% of women's cancer deaths worldwide. Conventional absorption-based breast imaging techniques lack sufficient contrast for comprehensive diagnosis. Propagation-based phase-contrast computed tomography (PB-CT) is a developing technique that exploits a more contrast-sensitive property of x-rays: x-ray refraction. X-ray absorption, refraction, and contrast-to-noise in the corresponding images depend on the x-ray energy used, for the same/fixed radiation dose. The aim of this paper is to explore the relationship between x-ray energy and radiological image quality in PB-CT imaging. Approach: Thirty-nine mastectomy samples were scanned at the imaging and medical beamline at the Australian Synchrotron. Samples were scanned at various x-ray energies of 26, 28, 30, 32, 34, and 60 keV using a Hamamatsu Flat Panel detector at the same object-to-detector distance of 6 m and mean glandular dose of 4 mGy. A total of 132 image sets were produced for analysis. Seven observers rated PB-CT images against absorption-based CT (AB-CT) images of the same samples on a five-point scale. A visual grading characteristics (VGC) study was used to determine the difference in image quality. Results: PB-CT images produced at 28, 30, 32, and 34 keV x-ray energies demonstrated statistically significant higher image quality than reference AB-CT images. The optimum x-ray energy, 30 keV, displayed the largest area under the curve ( AUC VGC ) of 0.754 ( p = 0.009 ). This was followed by 32 keV ( AUC VGC = 0.731 , p ≤ 0.001 ), 34 keV ( AUC VGC = 0.723 , p ≤ 0.001 ), and 28 keV ( AUC VGC = 0.654 , p = 0.015 ). Conclusions: An optimum energy range (around 30 keV) in the PB-CT technique allows for higher image quality at a dose comparable to conventional mammographic techniques. This results in improved radiological image quality compared with conventional techniques, which may ultimately lead to higher diagnostic efficacy and a reduction in breast cancer mortalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...