Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chonnam Med J ; 58(3): 102-109, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36245767

ABSTRACT

Bladder cancer is defined as a urinary tract malignancy that threatens men's and women's health. Due to the side effects of common chemotherapies, novel therapeutic strategies are necessary to overcome the issues concerning bladder cancer treatments. Nanotechnology has been suggested as a means to develop the next-generation objectives of cancer diagnosis and treatment among various novel therapies. Owing to the special characteristics that they can offer, silver nanoparticles (AgNPs) were investigated in this study to evaluate their apoptotic impact on bladder cancer 5637 cells. In this study, an MTT assay was conducted and appropriate concentrations of AgNPs were selected. Moreover, reactive oxygen species (ROS) production and apoptosis levels were determined using fluorimetric and Annexin/PI flow cytometry assays, respectively. Moreover, the activity of caspase 3,7, mRNA expression of Bax (Bcl-2-associated X) and Bcl-2 (B-cell lymphoma 2) were assessed based on colorimetric and qRT-PCR methods, respectively. The results indicated that AgNPs can significantly reduce the viability of 5637 cells in a dose-dependent mode as well as having the ability to elevate ROS production. Flow cytometry data showed that AgNPs lead to a remarkable increase in the apoptosis rate as compared with the control. Consistent with this, the induction of apoptosis was revealed by the overexpression of Bax, accompanied by a reduction in Bcl-2 expression compared to the control. Furthermore, AgNPs remarkably stimulated caspase 3,7 activation. In summary, AgNPs can mediate apoptosis in 5637 cells via excessive ROS formation, up-regulating Bax/Bcl-2 expression, and caspase 3,7 activation.

2.
Int J Inflam ; 2022: 3855368, 2022.
Article in English | MEDLINE | ID: mdl-35990198

ABSTRACT

Background: Pharmacotherapy with medicinal plants is a promising approach to treat cancer. Cinnamon is a medicinal plant whose properties have been proven in various fields of medical sciences. Among its biological activities, its antioxidant and antiviral effects can be mentioned. In this study, the antitumor effects of Cinnamon with a focus on glucose metabolism in bladder cancer carcinoma cell-line 5637 were investigated. Methods: Aqueous extract of Cinnamon was prepared from Cinnamon bark. Bladder cancer 5637cell line were treated with different concentrations of aqueous extract of Cinnamon. MTT was used to evaluate cell viability at 24, 48, and 72 h. The concentration of 1.25, 2.50, and 5 mg/ml was used. Apoptosis was assessed with Hochest33258 staining. For evaluating of aqueous extract of Cinnamon effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), heat shock protein transcription factor1 (HSF1), and lactate dehydrogenase A (LDHA), as well as protein levels of HSF1 and LDHA, LDH activity, glucose consumption, and lactate production, were measured. Results: Aqueous extract of Cinnamon significantly decreased ErbB2, HSF1, and LDHA gene expression and also decreased the protein level of HSF1 and LDHA, LDH activity, glucose consumption, and lactate production dose-dependently (p < 0.05). Conclusion: Our finding showed that the aqueous extract of Cinnamon can inhibit proliferation in 5637 cells by inhibition of glycolysis and induction of apoptosis.

3.
Anticancer Agents Med Chem ; 22(6): 1139-1148, 2022.
Article in English | MEDLINE | ID: mdl-34315398

ABSTRACT

BACKGROUND AND OBJECTIVE: The growing prevalence of bladder cancer worldwide has become a major concern for researchers, and the side effects of chemotherapy drugs have always been a major problem in cancer treatment. Cinnamaldehyde, the active ingredient in the Cinnamon plant, has long been considered with anti-oxidant and anti-inflammatory effects. METHODS: Bladder cancer 5637 cell lines were treated with the different concentrations of Cinnamaldehyde. MTT assay was performed to evaluate cell viability at 24, 48, and 72 hours. The concentration of 0.02, 0.04, and 0.08 mg/ml of Cinnamaldehyde was selected. Apoptosis was assessed with Annexin V-FITC/PI and Hochest33258 staining. Cell migration was performed by the scratch test. To evaluate Cinnamaldehyde effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), Heat Shock Protein Transcription Factor-1 (HSF1) and lactate dehydrogenase A (LDHA), as well as the protein levels of HSF1 and LDHA, LDH activity and finally glucose consumption and lactate production, were measured. RESULTS: Cinnamaldehyde significantly increased apoptosis rate in the 5637 cells (p<0.05). Furthermore, it significantly reduced the gene expression of ErbB2, HSF1, and LDHA, protein level of HSF1 and LDHA, LDH activity, as well as cell migration, glucose consumption, and lactate production (p<0.05). These changes were dose-dependent. CONCLUSION: Thus, Cinnamaldehyde induced apoptosis and decreased growth in 5637 cells by reducing ErbB2-HSF1- LDHA pathway.


Subject(s)
Urinary Bladder Neoplasms , Acrolein/analogs & derivatives , Cell Line, Tumor , Cell Proliferation/genetics , Glucose/metabolism , Glycolysis , Humans , L-Lactate Dehydrogenase/metabolism , Lactate Dehydrogenase 5 , Lactic Acid , Receptor, ErbB-2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...