Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Cell Rep Med ; 5(7): 101651, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019007

ABSTRACT

Gut microbial imbalance is noted in Crohn's disease (CD), but the specific bacteria associated with CD vary between studies. Chen et al.1 pair CD patients with their healthy first-degree relatives to mitigate some of the environmental and genetic effects.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Crohn Disease/microbiology , Crohn Disease/genetics , Humans , Gastrointestinal Microbiome/genetics , Family
2.
Mol Metab ; : 101985, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977130

ABSTRACT

OBJECTIVE: Excessive consumption of added sugars has been linked to the rise in obesity and associated metabolic abnormalities. Non-nutritive sweeteners (NNSs) offer a potential solution to reduce sugar intake, yet their metabolic safety remains debated. This study aimed to systematically assess the long-term metabolic effects of commonly used NNSs under both normal and obesogenic conditions. METHODS: To ensure consistent sweetness level and controlling for the acceptable daily intake (ADI), eight weeks old C57BL/6 male mice were administered with acesulfame K (ace K, 535.25 mg/L), aspartame (411.75 mg/L), sucralose (179.5 mg/L), saccharin (80 mg/L), or steviol glycoside (Reb M, 536.25 mg/L) in the drinking water, on the background of either regular or high-fat diets (in high fat diet 60% of calories from fat). Water or fructose-sweetened water (82.3.gr/L), were used as controls. Anthropometric and metabolic parameters, as well as microbiome composition, were analyzed following 20-weeks of exposure. RESULTS: Under a regular chow diet, chronic NNS consumption did not significantly affect body weight, fat mass, or glucose metabolism as compared to water consumption, with aspartame demonstrating decreased glucose tolerance. In diet-induced obesity, NNS exposure did not increase body weight or alter food intake. Exposure to sucralose and Reb M led to improved insulin sensitivity and decreased weight gain. Reb M specifically was associated with increased prevalence of colonic Lachnospiracea bacteria. CONCLUSIONS: Long-term consumption of commonly used NNSs does not induce adverse metabolic effects, with Reb M demonstrating a mild improvement in metabolic abnormalities. These findings provide valuable insights into the metabolic impact of different NNSs, aiding in the development of strategies to combat obesity and related metabolic disorders.

3.
Nat Commun ; 15(1): 3764, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704361

ABSTRACT

Crohn disease (CD) burden has increased with globalization/urbanization, and the rapid rise is attributed to environmental changes rather than genetic drift. The Study Of Urban and Rural CD Evolution (SOURCE, n = 380) has considered diet-omics domains simultaneously to detect complex interactions and identify potential beneficial and pathogenic factors linked with rural-urban transition and CD. We characterize exposures, diet, ileal transcriptomics, metabolomics, and microbiome in newly diagnosed CD patients and controls in rural and urban China and Israel. We show that time spent by rural residents in urban environments is linked with changes in gut microbial composition and metabolomics, which mirror those seen in CD. Ileal transcriptomics highlights personal metabolic and immune gene expression modules, that are directly linked to potential protective dietary exposures (coffee, manganese, vitamin D), fecal metabolites, and the microbiome. Bacteria-associated metabolites are primarily linked with host immune modules, whereas diet-linked metabolites are associated with host epithelial metabolic functions.


Subject(s)
Crohn Disease , Diet , Gastrointestinal Microbiome , Rural Population , Urban Population , Crohn Disease/microbiology , Crohn Disease/genetics , Humans , Male , Female , China/epidemiology , Adult , Israel/epidemiology , Metabolomics , Cohort Studies , Middle Aged , Feces/microbiology , Ileum/microbiology , Ileum/metabolism , Transcriptome , Young Adult
4.
Gut Microbes ; 16(1): 2309682, 2024.
Article in English | MEDLINE | ID: mdl-38324278

ABSTRACT

Spinal cord injury (SCI) is a devastating event that significantly changes daily function and quality of life and is linked to bowel and bladder dysfunction and frequent antibiotic treatment. We aimed to study the composition of the gut microbiome in individuals with SCI during the initial sub-acute rehabilitation process and during the chronic phase of the injury. This study included 100 fecal samples from 63 participants (Median age 40 years, 94% males): 13 cases with SCI in the sub-acute phase with 50 longitudinal samples, 18 cases with chronic SCI, and 32 age and gender-matched controls. We show, using complementary methods, that the time from the injury was a dominant factor linked with gut microbiome composition. Surprisingly, we demonstrated a lack of gut microbial recovery during rehabilitation during the sub-acute phase, with further deviation from the non-SCI control group in the chronic ambulatory SCI group. To generalize the results, we were able to show significant similarity of the signal when comparing to a previous cohort with SCI, to subjects from the American Gut Project who reported low physical activity, and to subjects from another population-based cohort who reported less normal stool consistency. Restoration of the microbiome composition may be another desirable measure for SCI recovery in the future, but further research is needed to test whether such restoration is associated with improved neurological outcomes and quality of life.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Spinal Cord Injuries , Male , Humans , Adult , Female , Quality of Life , Exercise
5.
Sci Rep ; 13(1): 20513, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993670

ABSTRACT

Disruption of intestinal epithelial functions is linked to Crohn disease (CD) pathogenesis. We identified a widespread reduction in the expression of long non-coding RNAs (lncRNAs) including LHFPL3-AS2 in the treatment-naïve CD ileum of the RISK pediatric cohort. We validated the reduction of LHFPL3-AS2 in adult CD and noted a further reduction in patients with more severe CD from the RISK cohort. LHFPL3-AS2 knockdown in Caco-2 cells robustly affected epithelial monolayer morphogenesis with markedly reduced confluency and spreading, showing atypical rounding, and clumping. mRNA-seq analysis of LHFPL3-AS2 knockdown cells highlighted the reduction of genes and pathways linked with apical polarity, actin bundles, morphogenesis, and the b-catenin-TCF4 complex. LHFPL3-AS2 knockdown significantly reduced the ability of cells to form an internal lumen within the 3-dimensional (3D) cyst model, with mislocalization of actin and adherent and tight junction proteins, affecting epithelial polarity. LHFPL3-AS2 knockdown also resulted in defective mitotic spindle formation and consequent reduction in epithelial proliferation. Altogether, we show that LHFPL3-AS2 reduction affects epithelial morphogenesis, polarity, mitotic spindle formation, and proliferation, which are key processes in maintaining epithelial homeostasis in CD. Reduced expression of LHFPL3-AS2 in CD patients and its further reduction with ileal ulceration outcome, emphasizes its significance in this context.


Subject(s)
Crohn Disease , RNA, Long Noncoding , Adult , Humans , Child , Caco-2 Cells , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Crohn Disease/genetics , Actins/genetics , Cell Proliferation/genetics , Ileum/metabolism , Cell Line, Tumor
6.
Nucleic Acids Res ; 51(13): 6593-6608, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37326027

ABSTRACT

16S rRNA amplicon sequencing provides a relatively inexpensive culture-independent method for studying microbial communities. Although thousands of such studies have examined diverse habitats, it is difficult for researchers to use this vast trove of experiments when interpreting their own findings in a broader context. To bridge this gap, we introduce dbBact - a novel pan-microbiome resource. dbBact combines manually curated information from studies across diverse habitats, creating a collaborative central repository of 16S rRNA amplicon sequence variants (ASVs), which are assigned multiple ontology-based terms. To date dbBact contains information from more than 1000 studies, which include 1500000 associations between 360000 ASVs and 6500 ontology terms. Importantly, dbBact offers a set of computational tools allowing users to easily query their own datasets against the database. To demonstrate how dbBact augments standard microbiome analysis we selected 16 published papers, and reanalyzed their data via dbBact. We uncovered novel inter-host similarities, potential intra-host sources of bacteria, commonalities across different diseases and lower host-specificity in disease-associated bacteria. We also demonstrate the ability to detect environmental sources, reagent-borne contaminants, and identify potential cross-sample contaminations. These analyses demonstrate how combining information across multiple studies and over diverse habitats leads to better understanding of underlying biological processes.


Subject(s)
Knowledge Bases , Microbiota , Bacteria/genetics , DNA, Bacterial/genetics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
7.
JCI Insight ; 8(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37261910

ABSTRACT

Ulcerative colitis (UC), Crohn's disease (CD), and celiac disease are prevalent intestinal inflammatory disorders with nonsatisfactory therapeutic interventions. Analyzing patient data-driven cohorts can highlight disease pathways and new targets for interventions. Long noncoding RNAs (lncRNAs) are attractive candidates, since they are readily targetable by RNA therapeutics, show relative cell-specific expression, and play key cellular functions. Uniformly analyzing gut mucosal transcriptomics from 696 subjects, we have highlighted lncRNA expression along the gastrointestinal (GI) tract, demonstrating that, in control samples, lncRNAs have a more location-specific expression in comparison with protein-coding genes. We defined dysregulation of lncRNAs in treatment-naive UC, CD, and celiac diseases using independent test and validation cohorts. Using the Predicting Response to Standardized Pediatric Colitis Therapy (PROTECT) inception UC cohort, we defined and prioritized lncRNA linked with UC severity and prospective outcomes, and we highlighted lncRNAs linked with gut microbes previously implicated in mucosal homeostasis. HNF1A-AS1 lncRNA was reduced in all 3 conditions and was further reduced in more severe UC form. Similarly, the reduction of HNF1A-AS1 ortholog in mice gut epithelia showed higher sensitivity to dextran sodium sulfate-induced colitis, which was coupled with alteration in the gut microbial community. These analyses highlight prioritized dysregulated lncRNAs that can guide future preclinical studies for testing them as potential targets.


Subject(s)
Celiac Disease , Colitis, Ulcerative , Crohn Disease , RNA, Long Noncoding , Animals , Mice , Colitis, Ulcerative/genetics , Crohn Disease/genetics , RNA, Long Noncoding/genetics , Celiac Disease/genetics , Transcriptome , Prospective Studies
8.
Sci Rep ; 13(1): 2007, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737654

ABSTRACT

We aimed to determine microbial signature linked with lung cancer (LC) diagnosis and to define taxa linked with durable clinical benefit (DCB) of advanced LC patients. Stool samples for microbial 16S amplicon sequencing and clinical data were collected from 75 LC patients (50 of which were treated with checkpoint inhibitors) and 31 matched healthy volunteers. We compared LC to healthy controls and patients with DCB to those without. LC patients had lower α-diversity and higher between-subject diversity. Random Forests model to differentiate LC cases from controls ROC-AUC was 0.74. Clostridiales, Lachnospiraceae, and Faecalibacterium prausnitzii taxa abundance was decreased in LC compared to controls. High Akkermansia muciniphila correlated with DCB (HR 4.26, 95% CI 1.98-9.16), not only for the immunotherapy-treated patients. In addition, high Alistipes onderdonkii (HR 3.08, 95% CI 1.34-7.06) and high Ruminococcus (HR 7.76, 95% CI 3.23-18.65) correlated with DCB.Our results support the importance of gut microbiome in LC. We have validated the apparent predictive value of Akkermansia muciniphila, and highlighted Alistipes onderdonkii and Ruminococcus taxa correlation with DCB. Upon additional validations those can be used as biomarkers or as targets for future therapeutic interventions.


Subject(s)
Gastrointestinal Microbiome , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Bacteroidetes , Verrucomicrobia , Clostridiales
9.
J Crohns Colitis ; 17(6): 960-971, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-36655602

ABSTRACT

BACKGROUND AND AIMS: Widespread dysregulation of long non-coding RNAs [lncRNAs] including a reduction in GATA6-AS1 was noted in inflammatory bowel disease [IBD]. We previously reported a prominent inhibition of epithelial mitochondrial functions in ulcerative colitis [UC]. However, the connection between reduction of GATA6-AS1 expression and attenuated epithelial mitochondrial functions was not defined. METHODS: Mucosal transcriptomics was used to conform GATA6-AS1 reduction in several treatment-naïve independent human cohorts [n=673]. RNA pull-down followed by mass spectrometry was used to determine the GATA6-AS1 interactome. Metabolomics and mitochondrial respiration following GATA6-AS1 silencing in Caco-2 cells were used to elaborate on GATA6-AS1 functions. RESULTS: GATA6-AS1 showed predominant expression in gut epithelia using single cell datasets. GATA6-AS1 levels were reduced in Crohn's disease [CD] ileum and UC rectum in independent cohorts. Reduced GATA6-AS1 lncRNA was further linked to a more severe UC form, and to a less favourable UC course. The GATA6-AS1 interactome showed robust enrichment for mitochondrial proteins, and included TGM2, an autoantigen in coeliac disease that is induced in UC, CD and coeliac disease, in contrast to GATA6-AS1 reduction in these cohorts. GATA6-AS1 silencing resulted in induction of TGM2, and this was coupled with a reduction in mitochondrial membrane potential and mitochondrial respiration, as well as in a reduction of metabolites linked to aerobic respiration relevant to mucosal inflammation. TGM2 knockdown in GATA6-AS1-deficient cells rescued mitochondrial respiration. CONCLUSIONS: GATA6-AS1 levels are reduced in UC, CD and coeliac disease, and in more severe UC forms. We highlight GATA6-AS1 as a target regulating epithelial mitochondrial functions, potentially through controlling TGM2 levels.


Subject(s)
Celiac Disease , Colitis, Ulcerative , Crohn Disease , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Caco-2 Cells , Intestinal Mucosa/metabolism , Crohn Disease/metabolism , Rectum , Inflammation/metabolism , Mitochondria/metabolism , GATA6 Transcription Factor/metabolism
10.
Genome Res ; 32(6): 1112-1123, 2022 06.
Article in English | MEDLINE | ID: mdl-35688483

ABSTRACT

The oral microbiome is linked to oral and systemic health, but its fluctuation under frequent daily activities remains elusive. Here, we sampled saliva at 10- to 60-min intervals to track the high-resolution microbiome dynamics during the course of human activities. This dense time series data showed that eating activity markedly perturbed the salivary microbiota, with tongue-specific Campylobacter concisus and Oribacterium sinus and dental plaque-specific Lautropia mirabilis, Rothia aeria, and Neisseria oralis increased after every meal in a temporal order. The observation was reproducible in multiple subjects and across an 11-mo period. The microbiome composition showed significant diurnal oscillation patterns at different taxonomy levels with Prevotella/Alloprevotella increased at night and Bergeyella HMT 206/Haemophilus slowly increased during the daytime. We also identified microbial co-occurring patterns in saliva that are associated with the intricate biogeography of the oral microbiome. Microbial source tracking analysis showed that the contributions of distinct oral niches to the salivary microbiome were dynamically affected by daily activities, reflecting the role of saliva in exchanging microbes with other oral sites. Collectively, our study provides insights into the temporal microbiome variation in saliva and highlights the need to consider daily activities and diurnal factors in design of oral microbiome studies.


Subject(s)
Microbiota , Saliva , Humans , Prevotella , RNA, Ribosomal, 16S , Saliva/microbiology
11.
Cureus ; 14(2): e22487, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35371778

ABSTRACT

Background Nosocomial infections are a significant health concern. Following surgery, infections are most commonly associated with the surgical site, yet there are other potential sources for infections after surgical interventions. Identification of the source of infections can be very challenging. Methodology An outbreak of postoperative infections following surgery led to intensive care unit (ICU) admission of patients immediately after the surgical procedure. The blood cultures of two patients were positive for Citrobacter freundii. The only connection between all cases was the anesthesiologist. An epidemiological inquiry could not definitively identify the source of the outbreak. Therefore, we utilized an RNA sequencing technique to evaluate the microbiome of the anesthesiologist and compared the results to bacteria cultured from the bloodstream of the two patients. Results The anesthesiologist's microbiome contained amplicons that were identical to those of the bacteria in the patient's bloodstream. Because Citrobacter freundii is an uncommon source of bloodstream infections, and in the normal human microbiome, the results establish the source of a cluster of infections to the anesthesiologist. Conclusions In cases of nosocomial infections, when conventional microbiological techniques do not clearly establish the source of the infection, using 16S RNA sequencing should be considered.

12.
Genome Biol ; 23(1): 61, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197084

ABSTRACT

BACKGROUND: Gut microbial alteration is implicated in inflammatory bowel disease but is noted in other diseases. Systematic comparison to define similarities and specificities is hampered since most studies focus on a single disease. RESULTS: We develop a pipeline to compare between disease cohorts starting from the raw V4 16S amplicon sequence variants. Including 12,838 subjects, from 59 disease cohorts, we demonstrate a predominant shared signature across diseases, indicating a common bacterial response to different diseases. We show that classifiers trained on one disease cohort predict relatively well other diseases due to this shared signal, and hence, caution should be taken when using such classifiers in real-world scenarios, where diseases are intermixed. Based on this common signature across a large array of diseases, we develop a universal dysbiosis index that successfully differentiates between cases and controls across various diseases and can be used for prioritizing fecal donors and samples with lower disease probability. Finally, we identify a set of IBD-specific bacteria, which can direct mechanistic studies and design of IBD-specific microbial interventions. CONCLUSIONS: A robust non-specific general response of the gut microbiome is detected in a large array of diseases. Disease classifiers may confuse between different diseases due to this shared microbial response. Our universal dysbiosis index can be used as a tool to prioritize fecal samples and donors. Finally, the IBD-specific taxa may indicate a more direct association to gut inflammation and disease pathogenesis, and those can be further used as biomarkers and as future targets for interventions.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Bacteria/genetics , Colitis, Ulcerative/microbiology , Crohn Disease/microbiology , Dysbiosis/microbiology , Feces/microbiology , Humans , Inflammatory Bowel Diseases/microbiology
13.
NPJ Biofilms Microbiomes ; 8(1): 2, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017536

ABSTRACT

The human gut microbiome develops during the first years of life, followed by a relatively stable adult microbiome. Day care attendance is a drastic change that exposes children to a large group of peers in a diverse environment for prolonged periods, at this critical time of microbial development, and therefore has the potential to affect microbial composition. We characterize the effect of day care on the gut microbial development throughout a single school year in 61 children from 4 different day care facilities, and in additional 24 age-matched home care children (n = 268 samples, median age of entering the study was 12 months). We show that day care attendance is a significant and impactful factor in shaping the microbial composition of the growing child, the specific daycare facility and class influence the gut microbiome, and each child becomes more similar to others in their day care. Furthermore, in comparison to home care children, day care children have a different gut microbial composition, with enrichment of taxa more frequently observed in older populations. Our results provide evidence that daycare may be an external factor that contributes to gut microbiome maturation and make-up in early childhood.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adult , Aged , Child , Child, Preschool , Day Care, Medical , Humans , Infant
14.
Sci Rep ; 11(1): 8922, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903709

ABSTRACT

The coronavirus disease 2019 (COVID-19) has rapidly spread around the world, impacting the lives of many individuals. Growing evidence suggests that the nasopharyngeal and respiratory tract microbiome are influenced by various health and disease conditions, including the presence and the severity of different viral disease. To evaluate the potential interactions between Severe Acute Respiratory Syndrome Corona 2 (SARS-CoV-2) and the nasopharyngeal microbiome. Microbial composition of nasopharyngeal swab samples submitted to the clinical microbiology lab for suspected SARS-CoV-2 infections was assessed using 16S amplicon sequencing. The study included a total of 55 nasopharyngeal samples from 33 subjects, with longitudinal sampling available for 12 out of the 33 subjects. 21 of the 33 subjects had at least one positive COVID-19 PCR results as determined by the clinical microbiology lab. Inter-personal variation was the strongest factor explaining > 75% of the microbial variation, irrespective of the SARS-CoV-2 status. No significant effect of SARS-CoV-2 on the nasopharyngeal microbial community was observed using multiple analysis methods. These results indicate that unlike some other viruses, for which an effect on the microbial composition was noted, SARS-CoV-2 does not have a strong effect on the nasopharynx microbial habitants.


Subject(s)
COVID-19/microbiology , Microbiota , Nasopharynx/microbiology , SARS-CoV-2/physiology , Adult , Aged , COVID-19/virology , Female , Humans , Male , Microbiota/genetics , Middle Aged , RNA, Ribosomal, 16S/genetics
15.
Methods Mol Biol ; 2243: 123-141, 2021.
Article in English | MEDLINE | ID: mdl-33606256

ABSTRACT

In this chapter, we will present an outline of a typical experimental and bioinformatic workflow for identification of bacterial amplicon sequence variants (ASVs) present in a set of samples. This chapter is written from a bioinformatic point of view; therefore, the specific experimental protocols are not detailed, but rather the impact of various experimental decisions on the downstream analysis is described. Emphasis is made on the transition from reads to ASVs, describing the Deblur algorithm.


Subject(s)
Genetic Variation/genetics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Algorithms , Animals , Bacteria/genetics , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenome/genetics , Workflow
16.
mSystems ; 5(3)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32546668

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide. While cirrhosis is the main risk factor for HCC, the factors influencing progression from cirrhosis to HCC remain largely unknown. Gut microbiota plays a key role in liver diseases; however, its association with HCC remains elusive. This study aimed to elucidate microbial differences between patients with HCC-associated cirrhosis (HCC-cirrhosis) and cirrhotic patients without HCC and healthy volunteers and to explore the associations between diet, lifestyle, and the microbiome of these patients. Fecal samples and food frequency questionnaires were collected from 95 individuals (30 HCC-cirrhosis patients, 38 cirrhotic patients without HCC, and 27 age- and body mass index [BMI]-matched healthy volunteers). 16S rRNA gene sequencing was performed. Bacterial richness in cirrhosis and HCC-cirrhosis patients was significantly lower than in healthy controls. The HCC-cirrhosis group was successfully classified with an area under the curve (AUC) value of 0.9 based on the dysbiotic fecal microbial signature. The HCC-cirrhosis group had a significant overrepresentation of Clostridium and CF231 and reduced Alphaproteobacteria abundance compared to cirrhotic patients without HCC. Patients with HCC-cirrhosis who were overweight displayed significantly decreased bacterial richness and altered microbiota composition compared to their normal-weight counterparts. There was a significant correlation in the HCC-cirrhosis group between intake of artificial sweeteners and the presence of Akkermansia muciniphila A unique microbial signature was observed in patients with HCC-cirrhosis, irrespective of cirrhosis stage, diet, or treatment. BMI, dietary sugar, and artificial sweeteners were significantly associated with alterations in the microbiome of HCC-cirrhosis patients. However, the increased abundance of Clostridium and CF231 observed in HCC-cirrhosis patients was not influenced by environmental factors, implying that this change was due to development of HCC.IMPORTANCE Development of hepatocellular carcinoma in patients with cirrhosis is associated with alterations in intestinal microbiota, including an escalation of dysbiosis and reduced bacterial richness. This study demonstrates that reduced bacterial richness and dysbiosis escalate with the progression of cirrhosis from compensated to decompensated cirrhosis and to HCC-associated cirrhosis (HCC-cirrhosis). Moreover, we report for the first time the effect of environmental factors on HCC-cirrhosis. Excess weight was associated with increased dysbiosis in patients with HCC compared to their normal-weight counterparts. Moreover, fatty liver, consumption of artificial sweeteners, and high-sugar foods were associated with altered microbial composition, including altered levels of Akkermansia muciniphila in HCC-cirrhosis. We have successfully determined that levels of Alphaproteobacteria and the two genera CF231 and Clostridium are significantly altered in cirrhotic patients who develop hepatocellular carcinoma, independently of cirrhosis severity and dietary habits.

17.
Nutrients ; 12(1)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941016

ABSTRACT

High fructose consumption is one of the hallmarks of Western diets and has been found to induce MeS symptoms in parallel to gut microbial dysbiosis. However, the causality between those two is still elusive. Here, we studied whether a significant modification of gut microbial composition by antibiotics can influence the fructose-induced metabolic changes. Male Sprague-Dawley (SD) rats were divided into four groups including controls, controls + antibiotics, high fructose diet (HFrD, 60% fructose), HFrD + antibiotics (n = 7-8 in each group) for a period of 8-weeks. The high fructose diet increased blood pressure (BP), triglyceride (TG), fatty liver and the expression of hepatic genes related to lipogenesis, and fructose transport and metabolism. In addition, fructose changed the microbial composition and increased acetic and butyric acids in fecal samples but not in the blood. Antibiotic treatment significantly reduced microbial diversity and modified the microbial composition in the samples. However, minimal or no effect was seen in the metabolic phenotypes. In conclusion, high fructose consumption (60%) induced metabolic changes and dysbiosis in rats. However, antibiotic treatment did not reverse the metabolic phenotype. Therefore, the metabolic changes are probably independent of a specific microbiome profile.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diet/adverse effects , Dysbiosis , Fructose/adverse effects , Gastrointestinal Microbiome/drug effects , Animals , Liver/drug effects , Male , Metabolic Syndrome , Rats , Rats, Sprague-Dawley
18.
Sci Rep ; 9(1): 16163, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700112

ABSTRACT

Celiac disease is provoked by gluten exposure, but the complete pathogenic process in the duodenum and the loss of tolerance to gluten is not well understood. We aimed to define the core celiac transcriptomic signature and pathologic pathways in pre-treatment formalin-fixed paraffin-embedded (FFPE) duodenum biopsies used for clinical diagnosis. We use mRNAseq to define pre-treatment diagnostic duodenum gene expression in 54 pediatric celiac patients and non-celiac controls, and we validate our key findings in two independent cohorts of 67 adults and pediatric participants that used fresh frozen biopsies. We further define similar and divergent genes and pathways in 177 small bowel Crohn disease patients and controls. We observe a marked suppression of mature epithelial metabolic functions in celiac patients, overlapping substantially with the Crohn disease signature. A marked adaptive immune response was noted for the up-regulated signature including interferon response, alpha-beta, and gamma-delta T-cells that overlapped to some extent with the Crohn disease signature. However, we also identified a celiac disease specific signature linked to increased cell proliferation, nuclear division, and cell cycle activity that was localized primarily to the epithelia as noted by CCNB1 and Ki67 staining. Lastly, we demonstrate the utility of the transcriptomic date to correctly classify disease or healthy states in the discovery and validation cohorts. Our data supplement recently published datasets providing insights into celiac pathogenesis using clinical pathology FFPE samples, and can stimulate new approaches to address this highly prevalent condition.


Subject(s)
Celiac Disease , Duodenum , Intestinal Mucosa , Transcriptome , Adolescent , Biopsy , Celiac Disease/diagnosis , Celiac Disease/metabolism , Celiac Disease/pathology , Child , Child, Preschool , Crohn Disease/drug therapy , Crohn Disease/metabolism , Crohn Disease/pathology , Cyclin B1/biosynthesis , Duodenum/metabolism , Duodenum/pathology , Female , Gene Expression Regulation , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Ki-67 Antigen/biosynthesis , Male
19.
PLoS One ; 14(11): e0224757, 2019.
Article in English | MEDLINE | ID: mdl-31738775

ABSTRACT

The gut microbiome likely plays a role in the etiology of multiple health conditions, especially those affecting the gastrointestinal tract. Little consensus exists as to the best, standard methods to collect fecal samples for future microbiome analysis. We evaluated three distinct populations (N = 132 participants) using 16S rRNA gene amplicon sequencing data to investigate the reproducibility, stability, and accuracy of microbial profiles in fecal samples collected and stored via fecal occult blood test (FOBT) or Flinders Technology Associates (FTA) cards, fecal immunochemical tests (FIT) tubes, 70% and 95% ethanol, RNAlater, or with no solution. For each collection method, based on relative abundance of select phyla and genera, two alpha diversity metrics, and four beta diversity metrics, we calculated intraclass correlation coefficients (ICCs) to estimate reproducibility and stability, and Spearman correlation coefficients (SCCs) to estimate accuracy of the fecal microbial profile. Comparing duplicate samples, reproducibility ICCs for all collection methods were excellent (ICCs ≥75%). After 4-7 days at ambient temperature, ICCs for microbial profile stability were excellent (≥75%) for most collection methods, except those collected via no-solution and 70% ethanol. SCCs comparing each collection method to immediately-frozen no-solution samples ranged from fair to excellent for most methods; however, accuracy of genus-level relative abundances differed by collection method. Our findings, taken together with previous studies and feasibility considerations, indicated that FOBT/FTA cards, FIT tubes, 95% ethanol, and RNAlater are excellent choices for fecal sample collection methods in future microbiome studies. Furthermore, establishing standard collection methods across studies is highly desirable.


Subject(s)
DNA, Bacterial/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome/genetics , Specimen Handling/methods , DNA, Bacterial/genetics , Feasibility Studies , Healthy Volunteers , Humans , Immunochemistry/instrumentation , Immunochemistry/methods , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Specimen Handling/instrumentation , Specimen Handling/standards
20.
mSystems ; 4(4)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31239396

ABSTRACT

Microbial sequences inferred as belonging to one sample may not have originated from that sample. Such contamination may arise from laboratory or reagent sources or from physical exchange between samples. This study seeks to rigorously assess the behavior of this often-neglected between-sample contamination. Using unique bacteria, each assigned a particular well in a plate, we assess the frequency at which sequences from each source appear in other wells. We evaluate the effects of different DNA extraction methods performed in two laboratories using a consistent plate layout, including blanks and low-biomass and high-biomass samples. Well-to-well contamination occurred primarily during DNA extraction and, to a lesser extent, in library preparation, while barcode leakage was negligible. Laboratories differed in the levels of contamination. Extraction methods differed in their occurrences and levels of well-to-well contamination, with plate methods having more well-to-well contamination and single-tube methods having higher levels of background contaminants. Well-to-well contamination occurred primarily in neighboring samples, with rare events up to 10 wells apart. This effect was greatest in samples with lower biomass and negatively impacted metrics of alpha and beta diversity. Our work emphasizes that sample contamination is a combination of cross talk from nearby wells and background contaminants. To reduce well-to-well effects, samples should be randomized across plates, samples of similar biomasses should be processed together, and manual single-tube extractions or hybrid plate-based cleanups should be employed. Researchers should avoid simplistic removals of taxa or operational taxonomic units (OTUs) appearing in negative controls, as many will be microbes from other samples rather than reagent contaminants.IMPORTANCE Microbiome research has uncovered magnificent biological and chemical stories across nearly all areas of life science, at times creating controversy when findings reveal fantastic descriptions of microbes living and even thriving in what were once thought to be sterile environments. Scientists have refuted many of these claims because of contamination, which has led to robust requirements, including the use of controls, for validating accurate portrayals of microbial communities. In this study, we describe a previously undocumented form of contamination, well-to-well contamination, and show that this sort of contamination primarily occurs during DNA extraction rather than PCR, is highest with plate-based methods compared to single-tube extraction, and occurs at a higher frequency in low-biomass samples. This finding has profound importance in the field, as many current techniques to "decontaminate" a data set simply rely on an assumption that microbial reads found in blanks are contaminants from "outside," namely, the reagents or consumables.

SELECTION OF CITATIONS
SEARCH DETAIL
...