Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
AMIA Jt Summits Transl Sci Proc ; 2024: 613-622, 2024.
Article in English | MEDLINE | ID: mdl-38827046

ABSTRACT

Monitoring cerebral neuronal activity via electroencephalography (EEG) during surgery can detect ischemia, a precursor to stroke. However, current neurophysiologist-based monitoring is prone to error. In this study, we evaluated machine learning (ML) for efficient and accurate ischemia detection. We trained supervised ML models on a dataset of 802 patients with intraoperative ischemia labels and evaluated them on an independent validation dataset of 30 patients with refined labels from five neurophysiologists. Our results show moderate-to-substantial agreement between neurophysiologists, with Cohen's kappa values between 0.59 and 0.74. Neurophysiologist performance ranged from 58-93% for sensitivity and 83-96% for specificity, while ML models demonstrated comparable ranges of 63-89% and 85-96%. Random Forest (RF), LightGBM (LGBM), and XGBoost RF achieved area under the receiver operating characteristic curve (AUROC) values of 0.92-0.93 and area under the precision-recall curve (AUPRC) values of 0.79-0.83. ML has the potential to improve intraoperative monitoring, enhancing patient safety and reducing costs.

2.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645051

ABSTRACT

Dysfunction of the retinal pigment epithelium (RPE) is a common shared pathology in major degenerative retinal diseases despite variations in the primary etiologies of each disease. Due to their demanding and indispensable functional roles throughout the lifetime, RPE cells are vulnerable to genetic predisposition, external stress, and aging processes. Building upon recent advancements in stem cell technology for differentiating healthy RPE cells and recognizing the significant roles of small extracellular vesicles (sEV) in cellular paracrine and autocrine actions, we investigated the hypothesis that the RPE-secreted sEV alone can restore essential RPE functions and rescue photoreceptors in RPE dysfunction-driven retinal degeneration. Our findings support the rationale for developing intravitreal treatment of sEV. We demonstrate that intravitreally delivered sEV effectively penetrate the full thickness of the retina. Xenogenic intraocular administration of human-derived EVs did not induce acute immune reactions in rodents. sEV derived from human embryonic stem cell (hESC)-derived fully differentiated RPE cells, but not sEV-depleted conditioned cell culture media (CCM minus sEV), rescued photoreceptors and their function in a Royal College of Surgeons (RCS) rat model. This model is characterized by photoreceptor death and retinal degeneration resulting from a mutation in the MerTK gene in RPE cells. From the bulk RNA sequencing study, we identified 447 differently expressed genes in the retina after hESC-RPE-sEV treatment compared with the untreated control. Furthermore, 394 out of 447 genes (88%) showed a reversal in expression toward the healthy state in Long-Evans (LE) rats after treatment compared to the diseased state. Particularly, detrimental alterations in gene expression in RCS rats, including essential RPE functions such as phototransduction, vitamin A metabolism, and lipid metabolism were partially reversed. Defective photoreceptor outer segment engulfment due to intrinsic MerTK mutation was partially ameliorated. These findings suggest that RPE-secreted sEV may play a functional role similar to that of RPE cells. Our study justifies further exploration to fully unlock future therapeutic interventions with sEV in a broad array of degenerative retinal diseases.

3.
Invest Ophthalmol Vis Sci ; 65(3): 6, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38466285

ABSTRACT

Purpose: Isolating extracellular vesicles (EVs) with high yield, replicable purity, and characterization remains a bottleneck in the development of EV therapeutics. To address these challenges, the current study aims to establish the necessary framework for preclinical and clinical studies in the development of stem cell-derived intraocular EV therapeutics. Methods: Small EVs (sEVs) were separated from the conditioned cell culture medium (CCM) of the human embryogenic stem cell-derived fully polarized retinal pigment epithelium (hESC-RPE-sEV) by a commercially available microfluidic tangential flow filtration (TFF) device ExoDisc (ED) or differential ultracentrifugation (dUC). The scaling and concentration capabilities and purity of recovered sEVs were assessed. Size, number, and surface markers of sEVs were determined by orthogonal approaches using multiple devices. Results: ED yielded higher numbers of sEVs, ranging from three to eight times higher depending on the measurement device, compared to dUC using the same 5 mL of CCM input. Within the same setting, the purity of ED-recovered hESC-RPE-sEVs was higher than that for dUC-recovered sEVs. ED yielded a higher concentration of particles, which is strongly correlated with the input volume, up to 10 mL (r = 0.98, P = 0.016). Meanwhile, comprehensive characterization profiles of EV surface markers between ED- and dUC-recovered hESC-RPE-sEVs were compatible. Conclusions: Our study supports TFF as a valuable strategy for separating sEVs for the development of intraocular EV therapeutics. However, there is a growing need for diverse devices to optimize TFF for use in EV preparation. Using orthogonal approaches in EV characterization remains ideal for reliably characterizing heterogeneous EV.


Subject(s)
Extracellular Vesicles , Human Embryonic Stem Cells , Humans , Culture Media, Conditioned , Filtration , Retinal Pigment Epithelium
4.
Pharmaceutics ; 16(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399355

ABSTRACT

The journal retracts the article, "Optimized Icariin Phytosomes Exhibit Enhanced Cytotoxicity and Apoptosis-Inducing Activities in Ovarian Cancer Cells" [...].

6.
Stud Health Technol Inform ; 310: 274-278, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269808

ABSTRACT

Continuous intraoperative monitoring with electroencephalo2 graphy (EEG) is commonly used to detect cerebral ischemia in high-risk surgical procedures such as carotid endarterectomy. Machine learning (ML) models that detect ischemia in real time can form the basis of automated intraoperative EEG monitoring. In this study, we describe and compare two time-series aware precision and recall metrics to the classical precision and recall metrics for evaluating the performance of ML models that detect ischemia. We trained six ML models to detect ischemia in intraoperative EEG and evaluated them with the area under the precision-recall curve (AUPRC) using time-series aware and classical approaches to compute precision and recall. The Support Vector Classification (SVC) model performed the best on the time-series aware metrics, while the Light Gradient Boosting Machine (LGBM) model performed the best on the classical metrics. Visual inspection of the probability outputs of the models alongside the actual ischemic periods revealed that the time-series aware AUPRC selected a model more likely to predict ischemia onset in a timely fashion than the model selected by classical AUPRC.


Subject(s)
Ischemia , Monitoring, Intraoperative , Humans , Time Factors , Area Under Curve , Electroencephalography
7.
Front Immunol ; 14: 1259725, 2023.
Article in English | MEDLINE | ID: mdl-37928549

ABSTRACT

Several virus-neutralizing monoclonal antibodies (mAbs) have become new tools in the treatment of the coronavirus disease (COVID-19), but their effectiveness against the rapidly mutating virus is questionable. The present study investigated the effectiveness of Tixagevimab/Cilgavimab and Regdanvimab for mild and moderate COVID-19 treatment in real-world clinical practice during the Omicron variant-dominant period. Patients with known risk factors for disease progression and increasing disease severity were enrolled in the study within the first 7 days of symptom onset. Seventy-seven patients were divided into four groups: first 15 patients received 300 mg Tixagevimab/Cilgavimab intravenously (IV) and 23 patients got the same drug 300 mg intramuscularly (IM), the next 15 patients was on the same combination in dose of 600 mg IV, and 24 patients were on Regdanvimab at a dose of 40 mg/kg IV. By Day 4, 100% of Tixagevimab/Cilgavimab IV patients showed negative polymerase chain reaction results for SARS-CoV-2 Ribonucleic acid (RNA) regardless of the mAbs dose while in the Regdanvimab group 29% of the patients were positive for SARS-CoV-2 virus RNA. The testing for virus neutralizing antibodies (nAbs) to various Omicron sublineages (BA.1, BA.2, and BA.5) showed that an increase in nAb levels was detected in blood serum immediately after the drug administration only in Tixagevimab/Cilgavimab 300 mg and 600 mg IV groups. In the group of intravenous Regdanvimab, a significant increase in the level of nAbs to the Wuhan variant was detected immediately after the drug administration, while no increase in nAbs to different Omicron sublineages was observed. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT05982704.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Humans , Antibodies, Blocking , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , RNA , SARS-CoV-2 , Treatment Outcome
9.
Pak J Pharm Sci ; 36(4): 1249-1260, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37599502

ABSTRACT

The antihypertensive drug valsartan, has an imperfect bioavailability due to its low solubility, permeability and excessive first pass hepatic metabolism. So, the goal of this article is to improve the physicochemical properties of valsartan to increase its bioavailability. In order to achieve this goal, valsartan- phospholipid complexsomes (VAL-PLC) were developed by the technique of solvent evaporation using Box-Behnken experimental design to optimize variables in the production process. The box- Behnken design revealed that the formula F3 prepared using 60% lipid percentage at 600C reaction temperature for 2h reaction time offered the optimum conditions for VAL-PLC preparation where the percent drug content reached 92.24%, average particle diameter was 189.17nm and polydispersity index was 0.289. Drug release experiment indicated that the dissolution of both raw valsartan and its commercial dosage form was dependent upon pH where it was extremely low at pH 1.2 and low in distilled water and it had a high dissolution at pH 6.8. On the contrary, the optimized VAL-PLC formula showed a high and pH-independent dissolution rate whatever the type of dissolution medium was. Therefore, it was concluded that valsartan-complexsomes may be considered as an encouraging approach for improving physicochemical properties and increasing bioavailability of valsartan.


Subject(s)
Antihypertensive Agents , Phospholipids , Valsartan , Biological Availability , Drug Liberation , Permeability
10.
Front Immunol ; 14: 1228461, 2023.
Article in English | MEDLINE | ID: mdl-37600800

ABSTRACT

To protect young individuals against SARS-CoV-2 infection, we conducted an open-label, prospective, non-randomised dose-escalation Phase 1/2 clinical trial to evaluate the immunogenicity and safety of the prime-boost "Sputnik V" vaccine administered at 1/10 and 1/5 doses to adolescents aged 12-17 years. The study began with the vaccination of the older cohort (15-to-17-year-old participants) with the lower (1/10) dose of vaccine and then expanded to the whole group (12-to-17-year-old participants). Next, 1/5 dose was used according to the same scheme. Both doses were well tolerated by all age groups. No serious or severe adverse events were detected. Most of the solicited adverse reactions were mild. No significant differences in total frequencies of adverse events were registered between low and high doses in age-pooled groups (69.6% versus 66.7%). In contrast, the 1/5 dose induced significantly higher humoral and T cell-mediated immune responses than the 1/10 dose. The 1/5 vaccine dose elicited higher antigen-binding (both S and RBD-specific) as well as virus-neutralising antibody titres at the maximum of response (day 42), also resulting in a statistically significant difference at a distanced timepoint (day 180) compared to the 1/10 vaccine dose. Higher dose resulted in increased cross-neutralization of Delta and Omicron variants. Clinical Trial Registration: ClinicalTrials.gov, NCT04954092, LP-007632.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Child , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Prospective Studies , SARS-CoV-2
11.
Urol Case Rep ; 50: 102512, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37547449

ABSTRACT

Metastatic esophageal adenocarcinoma to the urinary bladder is extremely rare and aggressive. We discuss here the case of an 83-year-old male with history of esophageal adenocarcinoma treated with chemoradiation therapy and esophagectomy who presented with gross hematuria and lower urinary tract symptoms. Pathology of the bladder tumor after transurethral resection demonstrated invasive adenocarcinoma of both the bladder and the prostatic urethra consistent with metastatic esophageal adenocarcinoma.

12.
Viruses ; 14(11)2022 11 10.
Article in English | MEDLINE | ID: mdl-36366583

ABSTRACT

The continued evolution of influenza viruses reduces the effectiveness of vaccination and antiviral drugs. The identification of novel and universal agents for influenza prophylaxis and treatment is an urgent need. We have previously described two potent single-domain antibodies (VHH), G2.3 and H1.2, which bind to the stem domain of hemagglutinin and efficiently neutralize H1N1 and H5N2 influenza viruses in vivo. In this study, we modified these VHHs with Fc-fragment to enhance their antiviral activity. Reformatting of G2.3 into bivalent Fc-fusion molecule increased its in vitro neutralizing activity against H1N1 and H2N3 viruses up to 80-fold and, moreover, resulted in obtaining the ability to neutralize H5N2 and H9N2 subtypes. We demonstrated that a dose as low as 0.6 mg/kg of G2.3-Fc or H1.2-Fc administered systemically or locally before infection could protect mice from lethal challenges with both H1N1 and H5N2 viruses. Furthermore, G2.3-Fc reduced the lung viral load to an undetectable level. Both VHH-Fc antibodies showed in vivo therapeutic efficacy when delivered via systemic or local route. The findings support G2.3-Fc as a potential therapeutic agent for both prophylaxis and therapy of Group 1 influenza A infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N2 Subtype , Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza, Human , Single-Domain Antibodies , Mice , Animals , Humans , Influenza, Human/prevention & control , Hemagglutinins , Antibodies, Neutralizing , Antibodies, Viral , Antiviral Agents/therapeutic use , Hemagglutinin Glycoproteins, Influenza Virus
13.
Beilstein J Nanotechnol ; 13: 836-844, 2022.
Article in English | MEDLINE | ID: mdl-36105688

ABSTRACT

A series of Pd1- x Fe x alloy epitaxial films (x = 0, 0.038, 0.062, and 0.080), a material promising for superconducting spintronics, was prepared and studied with ultrafast optical and magneto-optical laser spectroscopy in a wide temperature range of 4-300 K. It was found that the transition to the ferromagnetic state causes a qualitative change of both the reflectivity and the magneto-optical Kerr effect transients. A nanoscale magnetic inhomogeneity of the ferromagnet/paramagnet type inherent in the palladium-rich Pd1- x Fe x alloys reveals itself through the occurrence of a relatively slow, 10-25 ps, photoinduced demagnetization component following a subpicosecond one; the former vanishes at low temperatures only in the x = 0.080 sample. We argue that the 10 ps timescale demagnetization originates most probably from the diffusive transport of d electrons under the condition of nanoscale magnetic inhomogeneities. The low-temperature fraction of the residual paramagnetic phase can be deduced from the magnitude of the slow reflectivity relaxation component. It is estimated as ≈30% for x = 0.038 and ≈15% for x = 0.062 films. The minimal iron content ensuring the magnetic homogeneity of the ferromagnetic state in the Pd1- x Fe x alloy at low temperatures is about 7-8 atom %.

14.
Emerg Microbes Infect ; 11(1): 2229-2247, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36031930

ABSTRACT

Although unprecedented efforts aiming to stop the COVID-19 pandemic have been made over the past two years, SARSCoV-2 virus still continues to cause intolerable health and economical losses. Vaccines are considered the most effective way to prevent infectious diseases, which has been reaffirmed for COVID-19. However, in the context of the continuing virus spread because of insufficient vaccination coverage and emergence of new variants of concern, there is a high demand for vaccination strategy amendment. The ability to elicit protective immunity at the entry gates of infection provided by mucosal vaccination is key to block virus infection and transmission. Therefore, these mucosal vaccines are believed to be a "silver bullet" that could bring the pandemic to an end. Here, we demonstrate that the intranasally delivered Gam-COVID-Vac (Sputnik V) vaccine induced a robust (no less than 180 days) systemic and local immune response in mice. High immunogenic properties of the vaccine were verified in non-human primates (common marmosets) by marked IgG and neutralizing antibody (NtAb) production in blood serum, antigen-specific Tcell proliferation and cytokine release of peripheral blood mononuclear cells accompanied by formation of IgA antibodies in the nasal mucosa. We also demonstrate that Sputnik V vaccine can provide sterilizing immunity in K18-hACE2 transgenic mice exposed to experimental lethal SARS-CoV-2 infection protecting them against severe lung immunopathology and mortality. We believe that intranasal Sputnik V vaccine is a promising novel needle-free mucosal vaccine candidate for primary immunization as well as for revaccination and is worth further clinical investigation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cytokines , Humans , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Leukocytes, Mononuclear , Mice , Pandemics/prevention & control , Primates , SARS-CoV-2/genetics
15.
J Pharm Sci ; 111(12): 3304-3317, 2022 12.
Article in English | MEDLINE | ID: mdl-36007556

ABSTRACT

Preclinical studies suggest that most of statins or 3­hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors possess pleiotropic anticancer activity. The aim of the present work was to investigate the conjugation of the statin fluvastatin (FLV) with scorpion venom (SV), a natural peptide with proven anticancer properties, to enhance FLV cytotoxic activity and prepare colon targeted FLV-SV nanoconjugate beads for management of colon cancer. Response surface design was applied for the optimization of FLV-SV nanoconjugates. FLV-SV particle size and zeta potential were selected as responses. Cytotoxicity of optimized FLV-SV nanoconjugates was carried out on Caco2 cell line. Colon targeted alginate coated Eudragit S100 (ES100) beads for the optimized formula were prepared with the utilization of barium sulfate (BaSO4) as radiopaque contrast substance. Results revealed that optimized FLV-SV nanoconjugates showed a size of 71.21 nm, while the zeta potential was equal to 29.13 mV. Caco2 cells were considerably more sensitive to the FLV-SV formula (half-maximal inhibitory concentration (IC50) = 11.91 µg/mL) compared to SV and FLV used individually, as shown by values of IC50 equal to 30.23 µg/mL and 47.68 µg/mL, respectively. In vivo imaging of colon targeted beads, carried out by employing real-time X-ray radiography, confirmed the efficiency of colon targeted beads. Overall our results indicate that the optimized FLV-SV nanoconjugate loaded alginate coated ES100 beads could represent a promising approach for colon cancer with efficient colon targeting ability.


Subject(s)
Colonic Neoplasms , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Scorpion Venoms , Humans , Fluvastatin , Nanoconjugates , Caco-2 Cells , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/drug therapy , Alginates
16.
Am J Clin Exp Urol ; 10(3): 142-153, 2022.
Article in English | MEDLINE | ID: mdl-35874285

ABSTRACT

Nanomedicine is an evolving field of scientific research with unique advantages and challenges for the detection and treatment of medical diseases. Since 1995, the FDA has approved the administration of nanoparticle-based therapies. The initial generation of nanoparticles relied on an enhanced permeability and retention effect, associated with an increased penetrability of tumor related blood vessels. With increasing knowledge of biomarkers and molecular targets, active targeting of circulating tumor cells by nanoparticles provides an exciting area for application. The selective targeting of prostate cancer cells using a nanotechnology-based mechanism has the potential to optimize the delivery of therapeutic payloads directly to prostate cancer cells while minimizing systemic toxicities. The molecular targets that have been studied include prostate specific membrane antigen, gastrin-releasing peptide protein, glucose related protein, CD44, claudin, C-X-C chemokine receptor type 4 (CXCR-4), and adenosine. The clinical potential for nanoparticle-based therapies is supported by several studies that have progressed past the preclinical stage into clinical trials. In this review, we present the molecular biomarkers that have been targeted by ligands conjugated to the surface of nanoparticles for prostate cancer imaging and therapy.

17.
Vaccines (Basel) ; 10(5)2022 May 21.
Article in English | MEDLINE | ID: mdl-35632574

ABSTRACT

The new Omicron variant of SARS-CoV-2, first identified in November 2021, is rapidly spreading all around the world. Omicron has become the dominant variant of SARS-CoV-2. There are many ongoing studies evaluating the effectiveness of existing vaccines. Studies on the neutralizing activity of vaccinated sera against the Omicron variant are currently being carried out in many laboratories. In this study, we have shown the neutralizing activity of sera against the SARS-CoV-2 Omicron variant compared to the reference Wuhan D614G variant in individuals vaccinated with two doses of Sputnik V up to 6 months after vaccination and in individuals who experienced SARS-CoV-2 infection either before or after vaccination. As a control to our study we also measured neutralizing antibody titers in individuals vaccinated with two doses of BNT162b2. The decrease in NtAb titers to the Omicron variant was 8.1-fold for the group of Sputnik V-vaccinated individuals. When the samples were stratified for the time period after vaccination, a 7.6-fold or 8.8-fold decrease in NtAb titers was noticed after up to 3 and 3-to-6 months after vaccination. We observed a 6.7- and 5-fold decrease in Sputnik V-vaccinated individuals experiencing asymptomatic or symptomatic infection, respectively. These results highlight the observation that the decrease in NtAb to the SARS-CoV-2 Omicron variant compared to the Wuhan variant occurs for different COVID-19 vaccines in use, with some showing no neutralization at all, confirming the necessity of a third booster vaccination.

18.
Beilstein J Nanotechnol ; 13: 334-343, 2022.
Article in English | MEDLINE | ID: mdl-35425691

ABSTRACT

We have investigated the low-temperature magnetoresistive properties of a thin epitaxial Pd0.92Fe0.08 film at different directions of the current and the applied magnetic field. The obtained experimental results are well described within an assumption of a single-domain magnetic state of the film. In a wide range of the appled field directions, the magnetization reversal proceeds in two steps via the intermediate easy axis. An epitaxial heterostructure of two magnetically separated ferromagnetic layers, Pd0.92Fe0.08/Ag/Pd0.96Fe0.04, was synthesized and studied with dc magnetometry. Its magnetic configuration diagram has been constructed and the conditions have been determined for a controllable switching between stable parallel, orthogonal, and antiparallel arrangements of magnetic moments of the layers.

19.
J Pharm Sci ; 111(5): 1497-1508, 2022 05.
Article in English | MEDLINE | ID: mdl-34929155

ABSTRACT

Ocular infections are classified into superficial keratitis, conjunctivitis or deep infections such as corneal abscesses and blepharitis. Herein, we focused on the development of formulation approaches that could prolong the residence time of gemifloxacin (GM) and enhance its corneal penetration to facilitate GM effects both superficially and at the deep tissues. Ionic gelation method was used to prepare eight forms of GM nanoparticles (NPs) formulated from chitosan polymer using sodium tripolyphosphate (TPP)-induced precipitation method. Differential scanning colorimetry (DSC) and X-ray diffraction (XRD) demonstrated the interaction between the chitosan and GM. Particle size, entrapment efficiency and cumulative in vitro release were used to select the optimal formula using Design Expert® software. The mean diameter of the selected NPs was 158. 4 nm. The average entrapment efficiency and cumulative release exhibited by the formulated NPs were 46.6% and 74.9%, respectively. Pharmacokinetics studies carried out on rabbits revealed that the ocularly-administered NPs significantly increased the loaded GM concentration in the tear and aqueous humour samples that suggested enhancement of precorneal retention and transcorneal permeation, respectively. Furthermore, ocular pharmacodynamic studies conducted on rabbits following ocular infection with Staphylococcus aureus or Pseudomonas aeruginosa showed that the administered NPs augmented the antibacterial activity of the delivered GM. This was demonstrated via the histopathological examination of the dissected corneas that showed preserved histological features and reduced bacterial keratitis on using the GM NPs rather than GM solution. Moreover, the GM NPs-treated corneas showed lower viable bacterial counts than the GM solution-treated corneas. Accordingly, our study illustrated the capability of the chitosan NPs to promote the antibacterial activity of GM against eye infections via ocular administration.


Subject(s)
Chitosan , Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Cornea , Drug Carriers/pharmacology , Gemifloxacin/pharmacology , Particle Size , Rabbits
20.
Preprint in English | medRxiv | ID: ppmedrxiv-21267976

ABSTRACT

COVID-19 vaccination campaign has been launched around the world. More than 8 billion vaccines doses have been administered, according to the WHO. Published studies shows that vaccination reduces the number of COVID-19 cases and dramatically reduces COVID-19-associated hospitalizations and deaths worldwide. In turn, the emergence of SARS-CoV-2 variants of concern (VOC) with mutations in the receptor-binding domain (RBD) of S glycoprotein poses risks of diminishing the effectiveness of the vaccination campaign. In November 2021, the first information appeared about a new variant of the SARS-CoV-2 virus, which was named Omicron. The Omicron variant is of concern because it contains a large number of mutations, especially in the S glycoprotein (16 mutation in RBD), which could be associated with resistance to neutralizing antibodies (NtAB) and significantly reduce the effectiveness of COVID-19 vaccines. Neutralizing antibodies are one of the important parameters characterizing the protective properties of a vaccine. We conducted a study of neutralizing antibodies in the blood serum of people vaccinated with Sputnik V, as well as those revaccinated with Sputnik Light after Sputnik V. Results showed that a decrease in the level of neutralizing antibodies was observed against SARS-CoV-2 Omicron (B.1.1.529) variant in comparison to B.1.1.1 variant. Analysis of the sera of individuals vaccinated with Sputnik V 6-12 months ago showed that there was a decrease in the level of neutralizing antibodies by 11.76 folds. While no direct comparison with other vaccines declines has been done in this study, we note their reported decline in antibody neutralization at a much more significant level of 40-84 times. At the same time, the analysis of sera of individuals who were vaccinated with Sputnik V, and then revaccinated Sputnik Light, showed that 2-3 months after revaccination the decrease in the level of neutralizing antibodies against the Omicron variant was 7.13 folds. Despite the decrease in NtAb, we showed that all revaccinated individuals had NtAb to Omicron variant. Moreover, the NtAb level to Omicron variant in revaccinated sera are slightly higher than NtAb to B.1.1.1 in vaccinated sera.

SELECTION OF CITATIONS
SEARCH DETAIL
...