Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Altern Med ; 18(1): 197, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29940929

ABSTRACT

BACKGROUND: One of the molecular mechanisms involved in upper airway-related diseases is epithelial-to-mesenchymal transition (EMT). Olea europaea (OE) has anti-inflammatory properties and thus, great potential to prevent EMT. This study aimed to investigate the effect of OE on EMT in primary nasal human respiratory epithelial cells (RECs). METHODS: Respiratory epithelial cells were isolated and divided into four groups: control (untreated), treated with 0.05% OE (OE group), EMT induced with 5 ng/ml of transforming growth factor beta-1 (TGFß1 group) and treated with 5 ng/ml TGFß1 + 0.05% OE (TGFß1 + OE group). The effects of OE treatment on growth kinetics, morphology and protein expression in RECs were evaluated. Immunocytochemistry analysis was performed to quantitate the total percentage of E-cadherin and vimentin expression from day 1 to day 3. RESULTS: There were no significant differences between untreated RECs and OE-treated RECs in terms of their morphology, growth kinetics and protein expression. Induction with TGFß1 caused RECs to have an elongated spindle shape, a slower proliferation rate, a higher expression of vimentin and a lower expression of E-cadherin compared with the control. Cells in the TGFß1 + OE group had similar epithelial shape to untreated group however it had no significant differences in their proliferation rate when compared to TGFß1-induced RECs. Cells treated with TGFß1 + OE showed significantly reduced expression of vimentin and increased expression of E-cadherin compared with the TGFß1 group (P < 0.05). CONCLUSION: The ability of OE to inhibit EMT in RECs was shown by TGFb1-induced EMT REC morphology, growth kinetics and protein expression markers (E-cadherin and vimentin) upon treatment with OE and TGFß1. Therefore, this study could provide insight into the therapeutic potential of OE to inhibit pathological tissue remodelling and persistent inflammation.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Olea/chemistry , Plant Extracts/pharmacology , Transforming Growth Factor beta1/metabolism , Cells, Cultured , Epithelial Cells/cytology , Humans , Nasal Mucosa/cytology , Vimentin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...